首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
大气科学   1篇
海洋学   2篇
综合类   1篇
  2020年   1篇
  2011年   1篇
  2009年   1篇
  2005年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
We present a gridded data set of Sea Surface Salinity (SSS) for the tropical Pacific (120°E–70°W; 30°N–30°S), with a grid resolution of 1° longitude, 1° latitude and 1 month, from 1950 to 2008. The product, together with its associated error field, is derived from an objective analysis of about 10 million validated SSS records, with most of the data originating from Voluntary Observing Ships, TAO/TRITON moorings and Argo profilers (during the most recent period). We expect this product to benefit studies in oceanography, meteorology and paleoceanography. As examples of applications, we analyse: (a) the seasonal and ENSO (El Niño Southern Oscillation) modes of observed SSS variability, (b) the ability of 23 coupled models used in the Intergovernmental Panel for Climate Change 4th Assessment Report (IPCC AR4) to simulate the mean SSS and these two time varying modes, and (c) the usefulness of the SSS product and of its associated error field in calibrating and validating the paleo-salinity time series. We anticipate improvements and regular updates to our product, as more SSS data become available from in situ networks and from the ongoing and near-future satellite-derived observations by SMOS (Soil Moisture and Ocean Salinity) and Aquarius.  相似文献   
2.
Hu  Dunxin  Wang  Fan  Sprintall  Janet  Wu  Lixin  Riser  Stephen  Cravatte  Sophie  Gordon  Arnold  Zhang  Linlin  Chen  Dake  Zhou  Hui  Ando  Kentaro  Wang  Jianing  Lee  Jae-Hak  Hu  Shijian  Wang  Jing  Zhang  Dongxiao  Feng  Junqiao  Liu  Lingling  Villanoy  Cesar  Kaluwin  Chalapan  Qu  Tangdong  Ma  Yixin 《中国海洋湖沼学报》2020,38(4):906-929
The Western Tropical Pacific(WTP) Ocean holds the largest area of warm water(28℃) in the world ocean referred to as the Western Pacific Warm Pool(WPWP),which modulates the regional and global climate through strong atmospheric convection and its variability.The WTP is unique in terms of its complex 3-D ocean circulation system and intensive multiscale variability,making it crucial in the water and energy cycle of the global ocean.Great advances have been made in understanding the complexity of the WTP ocean circulation and associated climate impact by the international scientific community since the 1960 s through field experiments.In this study,we review the evolving insight to the 3-D structure and multi-scale variability of the ocean circulation in the WTP and their climatic impacts based on in-situ ocean observations in the past decades,with emphasis on the achievements since 2000.The challenges and open que stions remaining are reviewed as well as future plan for international study of the WTP ocean circulation and climate.  相似文献   
3.
Observed freshening and warming of the western Pacific Warm Pool   总被引:7,自引:0,他引:7  
Trends in observed sea surface salinity (SSS) and temperature are analyzed for the tropical Pacific during 1955–2003. Since 1955, the western Pacific Warm Pool has significantly warmed and freshened, whereas SSS has been increasing in the western Coral Sea and part of the subtropical ocean. Waters warmer than 28.5°C warmed on average by 0.29°C, and freshened by 0.34 pss per 50 years. Our study also indicates a significant horizontal extension of the warm and fresh surface waters, an expansion of the warm waters volume, and a notable eastward extension of the SSS fronts located on the equator and under the South Pacific Convergence Zone. Mixed layer depth changes examined along 137°E and 165°E are complex, but suggest an increase in the equatorial barrier layer thickness. Our study also reveals consistency between observed SSS trends and a mean hydrological cycle increase inferred from Clausius–Clapeyron scaling, as predicted under global warming scenarios. Possible implications of these changes for ocean–atmosphere interactions and El Niño events are discussed.  相似文献   
4.
Validation of a decadal OGCM simulation for the tropical Pacific   总被引:2,自引:0,他引:2  
An ocean general circulation model is forced with NCEP reanalysis over the 1948–1999 period. The simulated dynamic height and sea level are compared respectively to the dynamic height computed from hydrological data and to the sea level measured by tide gauges in the tropical Pacific. The model is shown to capture important features of the temporal structure of variability in the tide gauge data over the last several decades. However, the comparison reveals a largely artificial trend in the simulation, which consists of a decreasing dynamic height and sea level in the southwest and northwest of the tropical Pacific. Model sensitivity experiments show this trend is controlled by the NCEP surface wind stresses and more precisely by a weakening in the trade winds and a trend in the off-equatorial wind curl, with this trend existing mainly before the mid 1970s. For studies of decadal variability, the simple removal of a linear trend is an inadequate way to solve the problem, due to the inhomogeneities in the data used in reanalysis products and the non-linearity of models.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号