首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   6篇
  国内免费   2篇
大气科学   11篇
地球物理   29篇
地质学   55篇
海洋学   14篇
天文学   5篇
综合类   1篇
自然地理   9篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   5篇
  2018年   7篇
  2017年   2篇
  2016年   6篇
  2015年   7篇
  2014年   7篇
  2013年   18篇
  2012年   3篇
  2011年   6篇
  2010年   10篇
  2009年   5篇
  2008年   6篇
  2007年   5篇
  2006年   5篇
  2005年   7篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1997年   1篇
  1993年   2篇
  1988年   1篇
排序方式: 共有124条查询结果,搜索用时 31 毫秒
1.
The 20 km2 Galabre catchment belongs to the French network of critical zone observatories (OZCAR; Gaillardet et al., Vadose Zone Journal, 2018, 17(1), 1–24). It is representative of the sedimentary lithology and meteorological forcing found in Mediterranean and mountainous areas. Due to the presence of highly erodible and sloping badlands on various lithologies, the site was instrumented in 2007 to understand the dynamics of suspended sediments (SS) in such areas. Two meteorological stations including measurements of air temperature, wind speed and direction, air moisture, rainfall intensity, raindrop size and velocity distribution were installed both in the upper and lower part of the catchment. At the catchment outlet, a gauging station records the water level, temperature and turbidity (10 min time-step). Stream water samples are collected automatically to estimate SS concentration-turbidity relationships, allowing quantification of SS fluxes with known uncertainty. The sediment samples are further characterized by measuring their particle size distributions and by applying a low-cost sediment fingerprinting approach using spectrocolorimetric tracers. Thus, the contributions of badlands located on different lithologies to total SS flux are quantified at a high temporal resolution, providing the opportunity to better analyse the links between meteorological forcing variability and watershed hydrosedimentary response. The set of measurements was extended to the dissolved phase in 2017. Both stream water electrical conductivity and major ion concentrations are measured each week and every 3 h during storm events. This extension of measurements to the dissolved phase will allow progress in understanding both the origin of the water during the events and the partitioning between particulate and dissolved fluxes of solutes in the critical zone. All data sets are available at https://doi.osug.fr/public/DRAIXBLEONE_GAL/index.html .  相似文献   
2.
During thermal remediation the increase in subsurface temperature can lead to bubble formation and mobilization. In order to investigate the effect of gas formation on resulting aqueous concentrations, a 2D finite difference flow and mass transport model was developed which incorporates a macroscopic invasion percolation (MIP) model to simulate bubble expansion and movement. The model was used to simulate three soil scenarios with different permeabilities and entry pressures at various operating temperatures and groundwater velocities. It was observed that discrete bubble formation occurred in all three soils, upward mobility being limited by lower temperatures and higher entry pressures. Bubble mobilization resulted in a different aqueous mass distribution than if no discrete gas formation was modeled, especially at higher temperatures. This was a result of bubbles moving upwards to cooler areas, then collapsing, and contaminating previously clean zones. The cooling effect also led to possible non-aqueous phase liquid (NAPL) formation which was not predicted using a model without discrete bubble formation.  相似文献   
3.
In 2009, the Russian Complex Orbital Observations Near-Earth of Activity of the Sun (CORONAS-Photon) spacecraft was launched, carrying the Polish Solar PHotometer In X-rays (SphinX). The SphinX was most sensitive in the spectral range 1.2?–?15 keV, thus an excellent opportunity appeared for comparison with the low-energy end of Ramaty High Energy Solar Spectroscopic Imager (RHESSI) spectra. Common spectral measurements with these instruments cover the range where most of the flare energy is accumulated. We have chosen four consecutive small solar events observed on 4 July 2009 at 13:43 UT, 13:48 UT, 13:52 UT, and 13:55 UT (RHESSI flare peak times) and used them to compare the data and results from the two instruments. Moreover, we included Geostationary Operational Environmental Satellite (GOES) records in our analysis. In practice, the range of comparison performed for SphinX and RHESSI is limited roughly to 3?–?6 keV. RHESSI fluxes measured with a use of one, four, and nine detectors in the 3?–?4 keV energy band agree with SphinX measurements. However, we observed that SphinX spectral irradiances are three times higher than those of RHESSI in the 4?–?6 keV energy band. This effect contributes to the difference in obtained emission measures, but the derived temperatures of plasma components are similar. RHESSI spectra were fitted using a model with two thermal components. We have found that the RHESSI hot component is in agreement with GOES, and the RHESSI hotter component fits the SphinX flaring component well. Moreover, we calculated the so-called thermodynamic measure and the total thermal energy content in the four microflares that we studied. The results obtained show that SphinX is a very sensitive complementary observatory for RHESSI and GOES.  相似文献   
4.
Journal of Atmospheric Chemistry - In this study, the aerosol removal coefficients based on 7Be, 210Pb and 210Po radionuclides in the urban air, in Lodz, Poland, were investigated over 3 years,...  相似文献   
5.
6.
Measurements of surface partial pressure of CO2 and water column alkalinity, pHT, nutrients, oxygen, fluorescence and hydrography were carried out, south of the Canary Islands during September 1998. Cyclonic and anticyclonic eddies were alternatively observed from the northwestern area to the central area of the Canary Islands. Nutrient pumping and vertical uplifting of the deep chlorophyll maximum by cyclonic eddies were also ascertained by upward displacement of dissolved inorganic carbon. A model was applied to determine the net inorganic carbon balance in the cyclonic eddy. The fluxes were determined considering both the diffusive and convective contributions from the upward pumping and the corresponding horizontal transport of water outside the area. An increase in the total inorganic carbon concentration in the upper layers inside the eddy field of 133 mmol C m− 2 d− 1 was determined. The upward flux of inorganic carbon decreased the effect of the increased primary production on the carbon dioxide chemistry. The reduced fCO2 inside the cyclonic eddy, 15 μatm lower than that observed in non-affected surface water, was explained by thermodynamic aspects, biological activity, eddy upward pumping and diffusion and air–sea water exchange effects.  相似文献   
7.
International Journal of Earth Sciences - The Oligocene/Miocene basanite from Pilchowice (Sudetes Mts., SW Poland) carries numerous small xenoliths of mantle peridotite, mostly harzburgite. The...  相似文献   
8.
Mineralogy and Petrology - Supergene Mg-enriched erythrite, with an average composition (Co2.25Mg0.58Ni0.14Fe0.04Mn0.02 Zn0.02) (As1.97P<0.01O8)·8H2O, accompanied by skutterudite,...  相似文献   
9.
Changes in annual temperature extremes in the Carpathians since AD 1961   总被引:1,自引:1,他引:0  
The Carpathian Mountains region cover areas from seven countries of central and southeastern Europe, the mountain chain having major regional influences on the temperate climate, specific to latitudes between 43°N and 49°N. In order to identify changes in the annual temperature extremes, the Mann–Kendall nonparametric trend test has been applied to several thermal indices, recommended by the expert team on climate change detection and indices. The indices were computed from gridded daily datasets of minimum and maximum temperature at 0.1° resolution (~10 km), available online within the framework of the project CarpatClim (climate of the Carpathian region) for the period 1961–2010. The results show decreasing trends in cold-related indices, especially in the number of frost days, and increasing trends in warm-related ones. The trend patterns are consistent over the region, i.e., there are no mixed trends for a given index. Regional differences in climate extreme trends within the Carpathian region are related to altitude, rather than latitude. The number of summer days is increasing over the entire area, while the number of tropical nights presents upward trends mainly at lower elevations. The Warm Spell Duration Index presents upward trends over 60 % of the region. The (annual) East Atlantic pattern shows strong correlations with the warm-related indices. Our results are in agreement with previous temperature-related studies in the region.  相似文献   
10.
The structure of the Glueckstadt Graben has been investigated by use of 3D gravity backstripping technique and by 2D gravity and magnetic modelling. Subtracting the gravity effects of the Meso-Cenozoic sediments together with Permian salt reveals a positive residual anomaly within the Glueckstadt Graben. This anomaly includes two local maxima over the Westholstein and Eastholstein Troughs. The 2D gravity models point to the presence of a high-density body within the lower crust of the Glueckstadt Graben. In addition, the results of 2D magnetic modelling indicate that the central part of the high-density body is overlain by an area with high susceptibility. Most probable, the formation of this high-density body is a result of complex poly-phase tectonic history of the study area. Finally, the results of gravity modelling indicate that Permian salt is not homogeneous. 3D gravity analysis and, especially, 2D gravity modelling have distinguished the differences in degree of salt saturation in salt-rich bodies, and elucidate the proportion of Rotliegend salt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号