首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
大气科学   1篇
地球物理   1篇
地质学   3篇
  2021年   3篇
  2020年   1篇
  2010年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
序言     
张国华  孔少飞 《地球化学》2021,50(1):F0002-F0002
气溶胶是指悬浮在空气中的纳米及微米级固体或液体微粒,对大气能见度、人体健康、气候变化和生物地球化学循环都有重要影响。2020年以来,新冠疫情的全球蔓延也吸引了众多不同领域科学家更加关注气溶胶科学研究。越来越多的证据表明,COVID-19存在气溶胶传播的可能。  相似文献   
2.
天津近海大气中CH_4,N_2O和CO_2季节变化分析   总被引:1,自引:0,他引:1  
为研究渤海天津近海海域温室气体污染状况,分别于2006年8月、12月和2007年4月、11月在渤海天津近海对CH4,N2O和CO2三种主要温室气体进行了观测,并采用后轨迹模型对其来源进行了分析,得到结果认为采样期间区域大气受到天津沿海地区影响较大,表现出城市温室气体分布特征,同时可能受到海洋自身的影响.样品分析结果发现渤海天津近海大气中CH4浓度最大值出现在夏季为2.61μL/L,最小值在冬季为1.87μL/L.N2O的浓度范围为319.33~347.67nL/L,且各点位浓度值的分布为冬季>秋季>夏季>春季.CO2浓度的变化范围是375.4~648.4μL/L,采暖期高出非采暖期.渤海天津近海海域3种主要温室气体的浓度都已超过2005年全球平均本底浓度,应引起足够重视.三者在一定程度上受共同的源影响,尤其是CO2和N2O,自相关性显著且与气象因子的相关性一致.  相似文献   
3.
本研究采集了武汉市城区2018年3月至2019年2月的大气总沉降及湿沉降样品,使用苯多羧酸法测定溶解态黑碳含量,并结合气象条件分析溶解态黑碳沉降通量季节变化特征及其影响因素。结果表明,总沉降中溶解态黑碳月浓度范围为0.12~0.83 mg/L,均值为0.40 mg/L,湿沉降溶解态黑碳浓度范围为0.04~0.18 mg/L,均值为0.10 mg/L;溶解态黑碳总沉降和湿沉降年通量分别为269 mg·m?2·a?1和65 mg·m?2·a?1。溶解态黑碳总沉降通量季节变化为春季>冬季>夏季>秋季,湿沉降通量季节变化为冬季>春季>夏季>秋季。溶解态黑碳湿沉降通量主要受降雨量影响,而总沉降通量除受降雨量影响外还受风速、风向和空气质量等因素的共同影响。  相似文献   
4.
超低排放燃煤电厂一次颗粒物和黑碳实时排放特征   总被引:2,自引:0,他引:2  
燃煤电厂是大气一次污染物的重要排放源,其超低排放改造改变了大气颗粒物排放特征。为满足当前高时间分辨率排放清单构建的需要,燃煤电厂颗粒物实时排放质量浓度及关键组分比值亟需更新。本研究基于稀释通道采样系统,对某超低排放改造后的燃煤电厂开展实测,获得该燃煤电厂可吸入颗粒物(PM10)、细颗粒物(PM2.5)、超细颗粒物(PM1.0)和黑碳(BC)的实时排放质量浓度,更新各污染物排放因子,分析PM1.0/PM2.5、PM2.5/PM10和BC/PM2.5质量浓度比值(文中以上比值均为质量浓度比值)日变化。结果表明,上述污染物排放平均质量浓度分别为(5.0±6.0)mg/m^3、(5.0±5.9)mg/m^3、(4.9±5.9)mg/m^3和(36.6±28.3)μg/m^3;对应的排放因子分别为0.03 kg/t、0.03 kg/t、0.03 kg/t和0.2 mg/kg。该燃煤电厂颗粒物排放质量浓度表现出明显的日间变化,高值时段(20:30至次日10:30)PM2.5平均质量浓度是低值时段(10:30~20:30)的12.2倍,推测可能与不同时段的污染控制措施效率变动有关。作为不完全燃烧的产物,黑碳排放高值时段(06:00~12:00和14:30~19:00)的质量浓度是低值时段(00:00~05:00)相应值的1.5~2.4倍,推测与煤的添加和锅炉燃烧效率有关。颗粒物及组分质量浓度的日变化在构建高时间分辨率排放清单时需予以考虑。本研究实测所得PM2.5/PM10和BC/PM2.5比值分别为1.00±0.01和0.03±0.04,均远高于清单编制技术手册中推荐的燃煤电厂相应比值0.3和0.002,采用现有清单编制技术手册的相应比值可能低估了燃煤电厂细颗粒物和黑碳排放,需引起重视。  相似文献   
5.
国家重点研发计划“黑碳的农业与生活源排放对东亚气候、空气质量的影响及其气候-健康效益评估”课题的中期研究进展可归纳如下:1)针对观测和实验平台,课题组进行了针对飞机气路的重新设计和改装,加装了用于航测的大气黑碳(BC)、气溶胶光学、细颗粒物粒径谱、颗粒物组分及气体组分来源示踪相关仪器,对飞机设备进行了质量控制,并设计了针对课题研究的新飞行方案。搭建了多套源排放模拟燃烧实验平台和监测系统。2)开展了基于飞机和飞艇的针对华北、华中、长三角及山东地区的黑碳垂直廓线观测。通过空地联合观测,捕捉到了华北和华中等地跨区域的黑碳大气传输过程,探讨了传输的机制。3)组织了多次农村能源消耗调查。基于室内实验初步研究了民用燃料(煤和生物质)排放气溶胶的数浓度和单颗粒气溶胶(包括黑碳)组成、混合状态、实时演化特性。初步构建了中国民用燃煤和生物质燃烧的多污染物(包括黑碳)1 km×1 km排放清单。4)建立了黑碳的光学特性和混合特性模型。采用在线大气化学耦合模式(WRF-Chem)针对黑碳气溶胶对气象要素和边界层发展的影响进行模拟,探讨了黑碳-边界层相互作用机制对地面臭氧浓度的影响,揭示了黑碳对空气污染加剧/减弱影响的物理和化学机制。改进了地球系统模式,为后期开展黑碳气溶胶辐射效应的研究打下了坚实的技术基础。5)在北京和成都市开展了黑碳浓度对居民中不同类人群的呼吸及循环系统死亡率的影响研究,开展了黑碳浓度对居民急诊就诊人数的影响研究,分析了黑碳的健康效应。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号