首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   9篇
地球物理   9篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
排序方式: 共有9条查询结果,搜索用时 25 毫秒
1
1.
2.
3.
利用日本ALOS-2和欧空局Sentinel-1A卫星获得的尼泊尔地震同震形变场,结合GPS同震位移数据,联合反演了断层滑动分布特征和空间展布.结果表明:尼泊尔地震的同震形变场主要集中在150km×100km的范围内,且分为南北两个相邻的形变中心,南形变中心的视线向抬升量约为1.2m,北形变中心的视线向沉降量约为0.8m,均位于发震断层上盘.位于形变抬升区的KKN4和NAST两个GPS站,抬升量和南向运动量均达到了m级,而远离震区的其他GPS台水平和垂直观测量均在1cm以内.联合反演得到的断层位错分布主要集中在沿走向150km,沿倾向70km的范围内,最大滑动量为5.59m,平均滑动量为0.94m.断层面倾角在浅部约为7°,随着深度增加,倾角逐渐变大,到垂直深度20km时倾角接近12°;5月12日MW7.2级余震位于主震破裂区的"凹"型滑动缺损区域;主震破裂区的上边界与MBT空间位置十分吻合,主震破裂区主要集中的MBT以北50~60km处,垂直深度为8~9km,倾角为9°,继续向北时主震破裂面以10°~12°的倾角向深延伸,在18~20km可能与MHT交汇.因此,初步判定MBT为此次地震的发震断层.  相似文献   
4.
高频GPS可以实时获取地表位移数据,在地震学中有十分重要的现实应用,比如快速获取震中、震级、地震烈度甚至震源破裂过程.本文以汶川地震为例,首先利用近场7个GPS台站数据反演震中位置,由于高频GPS和测震学确认的震相不一致,两种震中结果相距约15.7 km.然后对高频GPS和强震动数据进行了比较分析,我们的统计结果表明,尽管由于工作原理不同,高频GPS数据中的地震动峰值与强震记录相比存在明显差异,但是高频GPS记录的PGA、PGV和PGD同样可以作为计算地震烈度的指标.进而,使用SMBLOC程序对强震记录进行事后的基线偏移校正,得到与实时高频GPS精度相当的地表位移序列.最后,采用移动平均窗口对这些位移数据作平滑,基于最速下降法和OKADA模型,对汶川地震断层破裂的过程进行了回溯性准实时反演.结果表明,汶川地震主断层由西南向东北方向破裂,以14∶28∶04为基准,在震后20 s提供初始震级MW7.0,震后70 s震级稳定在MW7.8,但断层仍在破裂,在震后159 s根据位移波形判断事件基本结束.研究表明,实时地表位移数据可以快速准确获取强震震级和破裂方向,从而使得高频GPS将对现有地震预警系统提供很好的补充.  相似文献   
5.
GPS揭示的郯庐断裂带中南段闭锁及滑动亏损   总被引:1,自引:0,他引:1       下载免费PDF全文
利用华北地区2009—2014年GPS水平运动速度场数据,采用块体负位错模型反演了郯庐断裂带中南段断层深部滑动速率、断层闭锁程度分布、断层滑动亏损速率分布及地震矩积累率,结合地表应变率分布,对郯庐断裂带中南段深、浅部形变、应变特征以及华北地区的地壳形变模式进行了分析.结果表明:郯庐断裂中南段的北端主要为右旋走滑特性,南端则表现为右旋走滑兼拉张性运动,断层滑动速率在0.9mm·a~(-1)至1.2mm·a~(-1),且沿断层走向由北至南逐次增大.断层闭锁程度分布沿走向分布不均一,断层闭锁深度由最北端的27km增加到中段的32km,至最南端变为5km,断层闭锁最深处与1668年郯城MS8.5震中位置相对应.断层滑动亏损速率沿走向由0.9mm·a~(-1)增加到1.2mm·a~(-1),沿倾向由地表至深部逐渐减小为0mm·a~(-1).地震矩积累率在郯庐断裂带中南段郯城附近较大,而地表对应区域为第二应不变分量的低值区.华北地区地壳变形以块体运动为主,块体内部应变及断层闭锁产生的负位错效应次之;郯庐断裂带中南段断层形变沿走向呈条带状分布,形变宽度单侧小于50km,形变量不超过1mm·a~(-1),且上盘形变略大于下盘.  相似文献   
6.
高频GNSS实时地震学与地震预警研究现状   总被引:1,自引:0,他引:1       下载免费PDF全文
为实现从注重灾后救助向注重灾前预防转变,如何提高地震灾害监测预警和风险防范能力成为我们关注的重点.本文给出了国际上GNSS位移记录、强震动加速度记录、测震速度记录在地震预警中的应用现状,并总结了各自的特点,归纳出围绕高频GNSS地震学在震级与破裂过程实时反演中的几个需要进一步研究的关键问题:(1)引入北斗系统,基于高频GNSS(GPS/BDS)双系统的实时位移解算方法来提高实时单站位移解算精度,使实时解算精度达到厘米级;(2)开展强震仪加速度记录基线偏移校正研究,弥补地震近场GNSS站密度不足问题;(3)强震仪加速度记录与GNSS位移记录特点不同,开展强震仪加速度数据与GNSS位移数据实时融合处理研究,快速获得包含丰富地震形变和速率的波形数据;(4)测震学方法可快速估算震级,但是在强震发生时会出现震级饱和现象,造成震级估算偏低.需要开展基于GNSS位移时间序列的多种方法相结合的实时震级估算方法研究,通过与地震学方法比较和结合,来得到精度高、计算快的震级估值算法;(5)基于高频GNSS、断层初始模型快速选取、断层尺度、参数自适应调整是快速判断断层破裂方向的基础,在断层破裂过程自适应准实时反演算法方面需要进一步加强.通过国内外研究现状调研、分析,表明基于高频GNSS地震学的震级快速确定、震源破裂过程准实时反演算法的发展将对我国地震预警系统从"二网融合"到"三网融合"提供坚实的技术支撑.  相似文献   
7.
利用InSAR同震形变升、降轨数据和远场地震波数据,基于均方根最小与标量地震矩最小双重约束下的模拟退火方法,联合反演2008年11月10日大柴旦MW6.3地震震源破裂过程.结果表明,2008年大柴旦地震震源破裂过程整体表现为沿倾向方向从深部破裂起始点处向上往地表传播,且破裂未到达地表;在前7 s内,滑动沿西北和东南两个方向传播,7 s后主要沿东南方向传播,破裂过程时间持续约为11 s,同震滑动分布主要集中在地下10~20 km范围内,最大滑动量达-0.71 m;反演结果揭示本次地震为西南倾高角度兼具微量走滑分量的逆冲破裂事件,反演矩张量为3.96×1018N·m,矩震级约MW6.37.通过大柴旦地震发震断层和破裂机制综合分析,初步判断发震断层为西南倾向的大柴旦—宗务隆山断裂.  相似文献   
8.
鄂拉山断裂是位于青藏高原东北缘的一条右旋走滑断裂,前人通过野外地质考察厘定了其万年尺度的长期滑动速率,但对其现今运动学特征的认识仍不足.本文利用近二十年获取的GPS速度场,以贝叶斯理论作为断层滑动反演的理论框架,采用MCMC(马尔科夫链蒙特卡罗)方法,构建鄂拉山断裂的运动学模型,探讨该断裂的现今震间滑动速率和闭锁状态.研究结果表明,鄂拉山断裂的闭锁深度约为15 km,深部的滑动速率为5.0±1.5 mm·a^-1,反映了断层两侧地壳的整体相对运动速率.尽管当前研究区的GPS观测台站分布相对稀疏,但仍可以探测出断层闭锁状态沿走向的变化.在断层中段,由于几何形态的变化,形成了强闭锁的凹凸体,闭锁系数达到0.6~0.7;断层的南段和北段有明显的蠕滑特征,计算得到的闭锁系数仅为0.2~0.3.进一步计算凹凸体上由于滑动亏损产生的等效地震矩积累率为2.35×10^17 N·m/a,等同于M W5.6地震的能量水平.最后,针对研究区域GPS台站分布稀疏的局限,本研究基于滑动模型的误差最小化准则,给出有限资源条件下的GPS台站优化增设方案.  相似文献   
9.
2001年MW7.8昆仑山地震是近半个世纪以来青藏高原发生的最大震级地震。同震破裂产生的巨大应力扰动驱动控制着显著震后形变。二十年尺度的大地测量数据记录了地震后长时间、大范围、时空依赖的震后形变演化过程及差异,揭示了昆仑山地震破裂段复杂的断层分段震后运动学特征、分段摩擦性质差异和青藏高原中北部岩石圈流变性质/结构横向各向异性。本文简要回顾昆仑山地震后基于二十年尺度时序InSAR和GPS的震后形变观测方法和时空特征,特别是时空密集的InSAR观测,是该构造区震后GPS观测的重要补充及其不可替代的观测手段;总结大范围震后形变模拟方法及其揭示的震后运动过程、多种动力学机制及其关系。最后总结提出昆仑山地震震后形变20年研究取得的科学认识及尚待深入研究的科学问题,一方面要持续性地对东昆仑断裂带大范围地表形变进行观测研究;另一方面,要不断更新震后形变模型,进一步深化对该断裂带地震周期形变、区域构造对周期形变控制作用、复杂断层运动时空演化机制的认识。   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号