首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
地球物理   2篇
  2018年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 78 毫秒
1
1.
本文首先从震源波形中提取梅尔频率倒谱系数(MFCC)图,然后采用卷积神经网络(CNN)进行地震波形信号的震源类型—天然地震和爆破事件—分类识别.事件为首都圈及其附近的72个天然地震和101个人工爆破事件,用于提取梅尔频率倒谱系数图的波形信号为各观测台站波形3分量中的垂直分量波形.在各个事件的所有观测台站的垂直分量波形中,通过滑动窗口按同一准则去除被噪声淹没的部分台站波形,只选择留下未被噪声淹没的台站波形.每一个事件有107个观测台站,故有107份垂直分量波形,而不同事件被留下未被噪声淹没的波形则有几份至几十份不等.然后提取被留下未被噪声淹没的波形的梅尔频率倒谱系数图,以梅尔频率倒谱系数图作为CNN的输入,CNN的输出则为波形的震源类型(天然地震事件或爆破事件).若以单份波形为识别单元,采用五折交叉验证法进行测试,得到的平均准确率为95.78%.使用训练集中单份波形为识别单元,提取梅尔频率倒谱系数图,采用CNN训练出了天然地震事件与爆破事件波形分类器,一个事件在测试集中的多份波形信号通常不会都被正确识别,很可能有些波形被识别为天然地震事件,另一些波形被识别为爆破事件;这时,若识别单元改为事件,一个事件各台站的有效垂直分量波形中,超过一半的波形被识别为某一事件类型,则这个事件被归类为该事件类型,得到的正确识别率为97.1%.实验结果表明:卷积神经网络在天然地震事件与爆破事件的识别方面表现出色.这说明MFCC与卷积神经网络可以用于识别天然地震和爆破事件,尤其是深度学习更值得在地震信号处理方面做进一步的研究.  相似文献   
2.
BP神经网络和支持向量机(SVM)是两种主流的分类识别方法,用于天然地震和人工爆炸事件波形信号分类识别时取得了较好的效果。但BP神经网络存在易陷入局部最优及隐层数和隐层节点数与训练样本数据密切相关而无法有效预先确定;而支持向量机(SVM)方法则缺乏有效手段来选取合适的核函数,从中不能很好地扩展到多分类。针对天然地震和人工爆炸事件波形信号的分类识别问题,文中将上述两种方法和集成学习——BP-Adaboost方法进行了对比实验研究。据对所选用的地震、爆炸事件波形信号数据集的分类识别结果表明,BP-Adaboost方法得到了98%以上的正确识别率,并且具有较好的泛化能力。相较于BP神经网络和PCA-SVM方法,BP-Adaboost方法对于数据集的划分和识别结果具有更好的鲁棒性,应用于天然地震和人工爆炸事件波形信号分类识别时,可取得更好的识别效果。同时,结合Adaboost方法的原理,阐述了BP-Adaboost方法拥有更好分类结果和泛化能力的原因。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号