首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球物理   1篇
海洋学   1篇
天文学   6篇
  2019年   1篇
  2018年   1篇
  2009年   1篇
  2000年   1篇
  1986年   1篇
  1980年   1篇
  1976年   1篇
  1971年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Geomagnetism and Aeronomy - The hypothesis put forward by Svensmark and Friis-Christensen (1997), Svensmark (2007), Svensmark et al. (2017), and Stozhkov et al. (2017) assumes while completely...  相似文献   
2.
The time of the minimum of the solar cycle is usually determined by the minimum of the average monthly sunspot number smoothed over 13 months, i.e., with a large time delay, not earlier than eight months after the event. A new optimal method which allows one to establish the time of the minimum of the cycle as early as four months after the event is proposed. In the new method, the indicator of the time of a cycle minimum is the time of reaching the minimum level of average monthly values of the solar constant after which four succeeding values of this constant are larger than the pre-ceding minimum level. It is shown that the minimum of the past 23rd solar cycle took place in July, and the new 24th cycle started in August 2008.  相似文献   
3.
Quasi-periodic variations in the thermodynamic and hydrodynamic fine-structure properties of the granulation field along the photospheric surface are estimated quantitatively. The darkest vast intergranular lanes, called the intergranular knots, are the most important indicator of their physical properties. The formulated new definitions of “granule” and “intergranular lane” require a revision of the previous results. The definition of mesogranulation is given, and the method of its detection in the granulation field is described. The following important quantitative results, which established the extent and nature of the physical relationship between the granulation and mesogranulation fields, have been obtained for the first time: (1) the intensity amplitude of granules in mesogranules (ΔI(gr)/I 0)msgr = +10.3% is a factor of 1.4 larger than that of granules in intermesogranular regions [(ΔI(gr)/I 0)imsgr = +7.3%], whereas the intensity amplitude of intergranular lanes in mesogranules [(ΔI(igr)/I 0)msgr = ?6.0%] is a factor of 1.4 smaller than that of intergranular lanes in intermesogranular regions [(ΔI(igr)/I 0)imsgr = ?8.4%]; (2) the mean intensities of photospheric granules and intergranular lanes are (ΔI(gr)/I 0)phot = +9.2% and (ΔI(igr)/I 0)phot = ?7.5%, respectively; (3) granules cover 59% of the area of mesogranules, 45% of the area of the photosphere, and 31 % of the area of intermesogranular regions, while intergranular lanes cover 41, 55, and 69% of these areas, respectively; (4) intergranular knots and bright granules virtually never formed and do not exist in mesogranules and intermesogranular regions, respectively; (5) the amplitudes of intensity fluctuations in mesogranules and intermesogranular regions, as well as the areas occupied by them (49.4 and 50.6%, respectively), essentially level off, ΔI(msgr)/I 0 = +3.6% and ΔI(imsgr)/I 0 = ?3.5%, respectively.  相似文献   
4.
The velocity field in a large complex sunspot is investigated in Fe i 6302.5 Å and in H with a spatial resolution of about 2.5. The Evershed flow is almost parallel to the solar surface. For the inclination angle between the velocity and the horizontal = 4.4°±1.3° is estimated; = 11° is the definite upper limit.  相似文献   
5.
Izvestiya, Atmospheric and Oceanic Physics - The errors in measurements of the energy of the reflected solar radiation and the thermal radiation emitted from Earth entering space in all directions...  相似文献   
6.
Preliminary results of a study of photographic and photometric properties of the large-scale ( 3) structure of a sunspot and its surrounding photosphere are given. Stratospheric direct frames of the solar photosphere were used in the study. Isophotes located immediately beyond the outer edge of the penumbra were of an irregular form and reflected bright and dark regions. No presence of either a sunspot bright outer ring or inner ring was detected. The photospheric structure and its behaviour with time were, in fact, unchanged up to the very boundary of the penumbra.A distribution of the smeared intensity in a sunspot has been derived. The mean brightness of the penumbra is I PU 0.62 I and umbra I U < 0.15 I . An analysis of the obtained results allowed us to make a conclusion that the area of the dark penumbral regions exceeds that of the bright penumbral regions, and the condition S BR/S DR < 1 should be fulfilled in the penumbrae of sunspots.  相似文献   
7.
The distribution of the magnetic field and radial velocities in the sunspot group were investigated simultaneously at two atmospheric levels (H and 6302.499 Å) of the Sun inside the area of 35 × 80 photographically (Abdussamatov, 1970) using the method of escalation. The outward motion of matter in the spot umbra was detected.Distributions of the magnetic field at both levels are well correlated. The magnetic field motions are observed in the sunspot. The vertical gradient H decreases slightly in the direction of increasing H. The minimum of brightness I in sunspots corresponds to the maximum of H.  相似文献   
8.
From investigating spectrograms of penumbrae of some sunspots it is concluded that the maximum magnetic field strength occurs in dark filaments and amounts to 1800–1900 G; the intensity of the magnetic field in dark filaments is 100–400 G larger than in the neighbouring bright filaments; the bright filaments seen in the space between the dark features cannot be attributed to the ordinary undisturbed photosphere.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号