首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   1篇
地质学   2篇
  2020年   1篇
  2018年   2篇
排序方式: 共有3条查询结果,搜索用时 62 毫秒
1
1.
Water Resources - The objective of this study was to compare and assess the quality and study the hydrochemistry of groundwater in the Al-Baha and Al-Qassim areas, representing the Arabian Shield...  相似文献   
2.
Understanding how the Australian continent came together requires an understanding of structure in all levels of the lithosphere. Deep seismic reflection profiles across several Proterozoic orogens have revealed entirely buried tectonic elements, termed seismic provinces. Although undoubtedly important, the nature of these seismic provinces is typically not well characterised. The Capricorn Orogen is one such region, where the upper crust is relatively well known from geological and geophysical studies, but much of the deep crust is buried beneath Proterozoic basins. Here we combine geophysical datasets, including active and passive source seismic data and gravity data, to image the density, seismic velocity and compositional structure of the deep crust of the Capricorn Orogen. Crustal structure interpreted from deep seismic reflection studies is re-scaled using velocity information from receiver function studies. This modified geometry is used to construct a density model that satisfies Bouguer gravity data. Finally, after correcting for temperature and pressure dependencies, the velocity and density information is used to generate a compositional model of the orogen. This model indicates a varied structure with at least four distinct blocks between the Yilgarn and Pilbara cratons, bounded by major shear zones. We suggest that this variation is linked to multiple accretion events during the amalgamation of the West Australian Craton.  相似文献   
3.
In this study, bentonite (Ben), compost (Com), and biochar (Bio) were used as soil amendments to enhance sandy soil physical properties. A soil column experiment was conducted in a laboratory. Application rates were 3% (weight/weight) of Bio (T1), Ben (T2), and Com (T3). Furthermore, mixtures 1.5% and 1.5% of Bio and Ben (T4), Ben and Com (T5), and Bio and Com (T6), and a mixture 1%, 1%, and 1% of Bio, Ben, and Com (T7) in addition to control treatment were adopted. The mixtures of amendments and sandy soil were concentrated at the top 10 cm of columns. Results revealed that the cumulative evaporation was reduced by 2.3% and 5.7% as a result of using T3 and T5, respectively. However, the remaining treatments enhanced the cumulative evaporation. The application of amendments increased the capacity of the soil to maintain water by 35.4%, 24.4%, 13.3%, and 10.2%, for soils treated with T5, T3, T7, and T4, respectively. The water content at field capacity had the highest increase in the top 10 cm when treatment T3 was used. Although T3 (compost) was the most efficient for enhancing soil physical properties, this study recommends T5 and T7 to improve hydraulic properties of sandy soils. This is due to the fact that biochar and bentonite remain in the soil for a longer period and resist biodegradation while compost overcomes the negative impact of soil chemical properties as a result of biochar and bentonite additions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号