首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   8篇
测绘学   1篇
大气科学   13篇
地球物理   16篇
地质学   31篇
海洋学   12篇
天文学   4篇
自然地理   3篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   6篇
  2016年   6篇
  2015年   6篇
  2014年   6篇
  2013年   12篇
  2012年   5篇
  2011年   9篇
  2010年   5篇
  2009年   5篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2001年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
1.
River water temperature is a key physical variable controlling several chemical, biological and ecological processes. Its reliable prediction is a main issue in many environmental applications, which however is hampered by data scarcity, when using data‐demanding deterministic models, and modelling limitations, when using simpler statistical models. In this work we test a suite of models belonging to air2stream family, which are characterized by a hybrid formulation that combines a physical derivation of the key equation with a stochastic calibration of parameters. The air2stream models rely solely on air temperature and streamflow, and are of similar complexity as standard statistical models. The performances of the different versions of air2stream in predicting river water temperature are compared with those of the most common statistical models typically used in the literature. To this aim, a dataset of 38 Swiss rivers is used, which includes rivers classified into four different categories according to their hydrological characteristics: low‐land natural rivers, lake outlets, snow‐fed rivers and regulated rivers. The results of the analysis provide practical indications regarding the type of model that is most suitable to simulate river water temperature across different time scales (from daily to seasonal) and for different hydrological regimes. A model intercomparison exercise suggests that the family of air2stream hybrid models generally outperforms statistical models, while cross‐validation conducted over a 30‐year period indicates that they can be suitably adopted for long‐term analyses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
2.
Active, carbonate‐mineralizing microbial mats flourish in a tropical, highly evaporative, marine‐fed lagoonal network to the south of Cayo Coco Island (Cuba). Hypersaline conditions support the development of a complex sedimentary microbial ecosystem with diverse morphologies, a variable intensity of mineralization and a potential for preservation. In this study, the role of intrinsic (i.e. microbial) and extrinsic (i.e. physicochemical) controls on microbial mat development, mineralization and preservation was investigated. The network consists of lagoons, forming in the interdune depressions of a Pleistocene aeolian substratum; they developed due to a progressive increase in sea‐level since the Holocene. The hydrological budget in the Cayo Coco lagoonal network changes from west to east, increasing the salinity. This change progressively excludes grazers and increases the saturation index of carbonate minerals, favouring the development and mineralization of microbial mats in the easternmost lagoons. Detailed mapping of the easternmost lagoon shows four zones with different flooding regimes. The microbial activity in the mats was recorded using light–dark shifts in conjunction with microelectrode O2 and HS? profiles. High rates of O2 production and consumption, in addition to substantial amounts of exopolymeric substances, are indicative of a potentially strong intrinsic control on mineralization. Seasonal, climate‐driven water fluctuations are key for mat development, mineralization, morphology and distribution. Microbial mats show no mineralization in the permanently submersed zone, and moderate mineralization in zones with alternating immersion and exposure. It is suggested that mineralization is also driven by water‐level fluctuations and evaporation. Mineralized mats are laminated and consist of alternating trapping and binding of grains and microbially induced magnesium calcite and dolomite precipitation. The macrofabrics of the mats evolve from early colonizing Flat mats to complex Cerebroid or Terrace structures. The macrofabrics are influenced by the hydrodynamic regime: wind‐driven waves inducing relief terraces in windward areas and flat morphologies on the leeward side of the lagoon. Other external drivers include: (i) storm events that either promote (for example, by bioclasts covering) or prevent (for example, by causing erosion) microbial mat preservation; and (ii) subsurface degassing, through mangrove roots and desiccation cracks covered by Flat mats (i.e. forming Hemispheroids and Cerebroidal structures). These findings provide in‐depth insights into understanding fossil microbialite morphologies that formed in lagoonal settings.  相似文献   
3.
The relationship between particulate organic carbon (POC) concentrations measured in modern sediment and fluxes of exported POC to the sediment surface needs to be understood in order to use POC content as a proxy of paleo-environmental conditions. The objective of our study was to compare POC concentrations, POC mineralization rates calculated from O2 consumption and POC burial rates. Benthic O2 distributions were determined in 58 fine-grained sediment cores collected at different periods at 14 stations in the southeastern part of the Bay of Biscay with depths ranging from 140 to 2800 m. Depth-dependent volume-specific oxygen consumption rates were used to assess rates of aerobic oxidation of organic matter (OM), assuming that O2 consumption solely was related to heterotrophic activity at the sediment–water interface. Heterogeneity of benthic O2 fluxes denoted changes in time and space of fresh organic material sedimentation. The most labile fraction of exported POC engendered a steep decrease in concentration in the upper 5 mm of vertical O2 profiles. The rupture in the gradient of O2 microprofile may be related to the bioturbation-induced mixing depth of fast-decaying carbon. Average diffusive O2 fluxes showed that this fast-decaying OM flux was much higher than buried POC, although diffusive O2 fluxes underestimated the total sediment oxygen demand, and thus the fast-decaying OM flux to the sediment surface. Sedimentary POC burial was calculated from sediment mass accumulation rate and the organic carbon content measured at the top of the sediment. The proportion of buried POC relative to total exported POC ranged at the most between 50% and 10%, depending on station location. Therefore, for a narrow geographic area like the Bay of Biscay, burial efficiency of POC was variable. A fraction of buried POC consisted of slow-decaying OM that was mineralized within the upper decimetres of sediment through oxic and anoxic processes. This fraction was deduced from the decrease with depth in POC concentration. At sites located below 500 m water depth, where the fast-decaying carbon did not reach the anoxic sediment, the slow-decaying pool may control the O2 penetration depth. Only refractory organic material was fossilized in sedimentary records at locations where labile OM did not reach the anoxic portion of the sediment.  相似文献   
4.
Recent studies have shown that accumulation of 99Tc in seabed sediments labelled by authorised radioactive liquid discharges into the NE Irish Sea from the Sellafield reprocessing complex is greater than previously thought. In this paper, new data on 99Tc concentration profiles in subtidal and intertidal sediments from the eastern and western Irish Sea are provided with a view to elucidating the processes responsible for the incorporation and retention of 99Tc in the seabed. The data show that substantial amounts of 99Tc have accumulated in the fine-grained subtidal sediments off the Cumbrian coast, particularly after increased releases from Sellafield following the commissioning of the Enhanced Actinide Removal Plant (EARP) in 1994. In all the cores taken in this area, 99Tc has been found to be present to depths in excess of 30 cm. Analysis of 137Cs and 241Am profiles, together with other supporting geochemical data, show a high degree of homogenisation of the sediments down to these depths as a result of physical and biological processes, and confirm that incorporation of 99Tc into the sediment compartment is actually the result of mixing and reworking, rather than active sediment accumulation. In contrast, active deposition of material transported from this mixed pool of sediment appears to be the dominant mechanism controlling 99Tc profiles in intertidal areas close to the Sellafield discharge outfall.Data obtained from the analysis of subtidal sediment cores from the western Irish Sea mud basin suggest that similar mixing processes to those occurring in the subtidal sediments of the eastern Irish Sea are also active in this area. Time-series data on 99Tc concentrations in surficial sediments from this basin, gathered in the period 1988–2004, inclusive, show a clear increase in concentrations, by a factor of ~2, between samples collected pre-EARP and post-EARP. The constancy of 99Tc concentrations in surface sediments throughout the 1980s and the early-1990s suggests that little redissolution and export of 99Tc occurred over this extended period. A similar observation applies to the post-EARP period, when concentrations remained relatively constant despite the reported steady decrease in 99Tc concentrations in the overlying waters.This apparent lack of remobilisation is consistent with data from sequential extraction analyses, which indicate that the bulk of the 99Tc is strongly bound to non-labile geochemical phases, with only a small proportion associated with exchangeable and acido-soluble phases. Further, these analyses show that 99Tc is not associated with oxygen-sensitive and highly-reactive acid-volatile sulphides (AVS) to any significant extent.  相似文献   
5.
The AltiKa altimeter onboard SARAL is a joint CNES/ISRO mission launched in February 2013 that has the same 35 days repeat orbit of the previous European altimeters, Envisat, and ERS-1/2. SARAL/AltiKa is thus a unique opportunity to extend the repeat observations of this orbit that have been surveyed since 1991. However, the altimeter operates in Ka-band, which is higher than the previous frequencies, and offers new paths of investigation. The penetration depth is theoretically reduced from around 10 m in Ku-band to less than 1 m in Ka-band, such that the volume echo originates from the near subsurface. Second, the sharper antenna aperture leads to a narrower leading edge that reduces the impact of the ratio between surface and volume echoes of the height retrieval. Indeed, the spatial and temporal observations of AltiKa at cross-over points and along-track indicate that the impact of backscatter changes on the height decreasesfrom 0.3 m/dB for the Ku-band to only 0.05 m/dB for the Ka-band. Therefore, the height measurement is stable over time. Moreover, the volume echo in the Ka-band results from the near subsurface layer and is mostly controlled by ice grain size, unlike the Ku-band.  相似文献   
6.
About a decade ago, a large field of pockmarks (individual features up to 30 m in diameter and <2 m deep) was discovered in water depths of 15–40 m in the Bay of Concarneau in southern Brittany along the French Atlantic coast, covering an overall area of 36 km2 and characterised by unusually high pockmark densities in places reaching 2,500 per square kilometre. As revealed by geophysical swath and subbottom profile data ground-truthed by sediment cores collected during two campaigns in 2005 and 2009, the confines of the pockmark field show a spectacular spatial association with those of a vast expanse of tube mats formed by a benthic community of the suspension-feeding amphipod Haploops nirae. The present study complements those findings with subbottom chirp profiles, seabed sonar imagery and ultrasonic backscatter data from the water column acquired in April 2011. Results show that pockmark distribution is influenced by the thickness of Holocene deposits covering an Oligocene palaeo-valley system. Two groups of pockmarks were identified: (1) a group of large (>10 m diameter), more widely scattered pockmarks deeply rooted (up to 8 ms two-way travel time, TWTT) in the Holocene palaeo-valley infills, and (2) a group of smaller, more densely spaced pockmarks shallowly rooted (up to 2 ms TWTT) in interfluve deposits. Pockmark pore water analyses revealed high methane concentrations peaking at ca. 400 μl/l at 22 and 30 cm core depth in silty sediments immediately above Haploops-bearing layers. Water column data indicate acoustic plumes above pockmarks, implying ongoing pockmark activity. Pockmark gas and/or fluid expulsion resulting in increased turbidity (resuspension of, amongst others, freshly settled phytoplankton) could at least partly account for the strong spatial association with the phytoplankton-feeding H. nirae in the Bay of Concarneau, exacerbating impacts of anthropogenically induced eutrophication and growing offshore trawling activities. Tidally driven hydraulic pumping in gas-charged pockmarks represents a good candidate as large-scale short-term triggering mechanism of pockmark activation, in addition to episodic regional seismic activity.  相似文献   
7.
To accomplish its mission, the spaceborne observatory SNAP (SuperNova Acceleration Probe) requires a pointing stability of <0.03 arcseconds during exposures lasting up to 500 sec. A Monte Carlo simulation of the photoelectron statistics from the guiding star investigates geometrical (such as the pixel size of the detector or the plate scale) and physical parameters (such as the magnitude of the star). It is shown that simple centroiding calculations can lead to the desired accuracy with guide stars as faint as magnitude 16. Availability of these stars is verified thanks to the HST Guide Star Catalog complemented with a statistical model of the distribution of stars. Thus a through-the-lens sensor that uses stars as faint as magnitude 16 to provide the necessary guiding signals is feasible. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
8.
9.
The coastal zone is subject to many and varied changes resulting from human activities and natural processes. Existing or emerging agreements and legislation acknowledge the relevance of indicators for monitoring these. In the UK, following a series of recent workshops, potential indicators of nearshore disturbance have been identified and grouped into three broad indices: 'Coastline Morphological Change', 'Resource Use Change' and 'Environmental Quality and its Perception'. The present study developed these indicators further and tested their use by applying them to 18 sections in the Humber Estuary, Eastern England. The results obtained reflect the current knowledge of the state of the Humber environment and show the potential of integrative indicators but indicate that further studies are required to assess the relative importance of the indicators and their value in reflecting the ability of the ecosystems to sustain natural habitats and populations at a good conservation status.  相似文献   
10.
Most source-to-sink studies typically focus on the dynamics of clastic sediments and consider erosion, transport and deposition of sediment particles as the sole contributors. Although often neglected, dissolved solids produced by weathering processes contribute significantly in the sedimentary dynamics of basins, supporting chemical and/or biological precipitation. Calcium ions are usually a major dissolved constituent of water drained through the watershed and may facilitate the precipitation of calcium carbonate when supersaturating conditions are reached. The high mobility of Ca2+ ions may cause outflow from an open system and consequently loss. In contrast, in closed basins, all dissolved (i.e. non-volatile) inputs converge at the lowest point of the basin. The endoreic Great Salt Lake basin constitutes an excellent natural laboratory to study the dynamics of calcium on a basin scale, from the erosion and transport through the watershed to the sink, including sedimentation in lake's waterbody. The current investigation focused on the Holocene epoch. Despite successive lake level fluctuations (amplitude around 10 m), the average water level seems to have not been affected by any significant long-term change (i.e. no increasing or decreasing trend, but fairly stable across the Holocene). Weathering of calcium-rich minerals in the watershed mobilizes Ca2+ ions that are transported by surface streams and subsurface flow to the Great Salt Lake (GSL). Monitoring data of these flows was corrected for recent anthropogenic activity (river management) and combined with direct precipitation (i.e. rain and snow) and atmospheric dust income into the lake, allowing estimating the amount of calcium delivered to the GSL. These values were then extrapolated through the Holocene period and compared to the estimated amount of calcium stored in GSL water column, porewater and sediments (using hydrochemical, mapping, coring and petrophysical estimates). The similar estimate of calcium delivered (4.88 Gt) and calcium stored (3.94 Gt) is consistent with the premise of the source-to-sink approach: a mass balance between eroded and transported compounds and the sinks. The amount of calcium deposited in the basin can therefore be predicted indirectly from the different inputs, which can be assessed with more confidence. When monitoring is unavailable (e.g. in the fossil record), the geodynamic context, the average lithology of the watershed and the bioclimatic classification of an endoreic basin are alternative properties that may be used to estimate the inputs. We show that this approach is sufficiently accurate to predict the amount of calcium captured in a basin and can be extended to the whole fossil record and inform on the storage of calcium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号