首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   294篇
  免费   10篇
  国内免费   5篇
测绘学   2篇
大气科学   5篇
地球物理   89篇
地质学   152篇
海洋学   24篇
天文学   31篇
综合类   1篇
自然地理   5篇
  2023年   2篇
  2022年   6篇
  2021年   7篇
  2020年   6篇
  2019年   5篇
  2018年   33篇
  2017年   17篇
  2016年   19篇
  2015年   11篇
  2014年   20篇
  2013年   27篇
  2012年   15篇
  2011年   17篇
  2010年   22篇
  2009年   16篇
  2008年   13篇
  2007年   9篇
  2006年   10篇
  2005年   6篇
  2004年   4篇
  2002年   2篇
  2001年   8篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1994年   3篇
  1990年   3篇
  1989年   2篇
  1985年   1篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1949年   1篇
排序方式: 共有309条查询结果,搜索用时 171 毫秒
1.
2.
A review on the historical evolution of seismic hazard maps in Turkey is followed by summarizing the important aspects of the updated national probabilistic seismic hazard maps. Comparisons with the predecessor probabilistic seismic hazard maps as well as the implications on the national design codes conclude the paper.  相似文献   
3.
Manually collected snow data are often considered as ground truth for many applications such as climatological or hydrological studies. However, there are many sources of uncertainty that are not quantified in detail. For the determination of water equivalent of snow cover (SWE), different snow core samplers and scales are used, but they are all based on the same measurement principle. We conducted two field campaigns with 9 samplers commonly used in observational measurements and research in Europe and northern America to better quantify uncertainties when measuring depth, density and SWE with core samplers. During the first campaign, as a first approach to distinguish snow variability measured at the plot and at the point scale, repeated measurements were taken along two 20 m long snow pits. The results revealed a much higher variability of SWE at the plot scale (resulting from both natural variability and instrumental bias) compared to repeated measurements at the same spot (resulting mostly from error induced by observers or very small scale variability of snow depth). The exceptionally homogeneous snowpack found in the second campaign permitted to almost neglect the natural variability of the snowpack properties and focus on the separation between instrumental bias and error induced by observers. Reported uncertainties refer to a shallow, homogeneous tundra-taiga snowpack less than 1 m deep (loose, mostly recrystallised snow and no wind impact). Under such measurement conditions, the uncertainty in bulk snow density estimation is about 5% for an individual instrument and is close to 10% among different instruments. Results confirmed that instrumental bias exceeded both the natural variability and the error induced by observers, even in the case when observers were not familiar with a given snow core sampler.  相似文献   
4.
Because the mixture of seawater and freshwater in the Gyeongin-Ara Waterway in South Korea can lead to the intrusion of saline water into surrounding aquifers, systematic management through the establishment of a groundwater protection area is required. The analytic hierarchy process (AHP) model is used to delineate this protection area based on two primary factors and five secondary factors related to saline water intrusion. The study area is divided into 987 gridded cells with a unit size of 100 × 100 m, and the final evaluation score for each cell is calculated using the AHP model. Consequently, several artificial neural network models based on a multilayer perceptron are developed using the AHP’s secondary criteria and the evaluation score. Comparing the evaluation scores of ANN and AHP, more than 180 samples are required in the ANN model to insure high R2 between the original and estimated values. The ANN model is more consistent than the AHP model when determining groundwater protection area, because it can be re-constructed due to the changes in some secondary criteria and also changed due to a standardization process. The final evaluation score by the ANN model based on 300 samples, with the highest R2, is calculated and the regions with a score higher than 2.0 are selected as the groundwater protection area, accounting for 15% of the total cells. This area is similar to the range within approximately 200 m of the GA Waterway and also includes some changing sites in hydrogeochemistry and electric conductivity, which is produced by saline water intrusion. If the land-use type, groundwater levels, and some other criteria change at any cell, the ANN model can be re-executed to verify whether the cell belongs to a groundwater protection area. Considering that salinity of groundwater near the waterway can be affected by various factors including well depth, pumping conditions, and groundwater levels, the ANN model, which is a non-linear model, can be more effective for prediction than the AHP model.  相似文献   
5.
We present preliminary statistics on the precipitable water vapor (PWV) content over the Karakaya Hills in Erzurum city, where the largest optical and near-infrared astronomical telescope in Turkey will be operated. Since the observatory will observe in the near-infrared (NIR), it is intended to perform PWV measurements of the atmosphere above the site by using signal delays in Global Positioning System (GPS) communication. The analysis of the GPS data recorded on the summit for almost one year shows that the atmosphere over the site of the observatory, which has an altitude of 3170 m, has favorable conditions for NIR observations. From GPS measurements, we report that the site had an average PWV of 3.2 mm and a median PWV of 2.7 mm between October 6, 2016, and June 15, 2017. We also present the time dependency of the PWV content and the correlations between the amount of PWV and the other meteorological records gathered from radiosonde flights and ground-based measurements.  相似文献   
6.
Western Anatolia hosts many low-to-moderate and high-temperature geothermal sources in which active faults play a dominant role to control the recharge and the discharge of geothermal fluid. In this study, we used the two-dimensional geoelectric structure of Kütahya Hisarcık geothermal field, and created a conceptual hydrogeophysical model that includes faults, real topographical variations and geological units. The temperature distribution and fluid flow pattern are also investigated. The depth extension of Hisarcık Fault, electrical basement and low resistivity anomalies related to the presence of geothermal fluid are determined by using resistivity studies in the area. Numerical simulations suggest that Hisarcık fault functioning as a fluid conduit primarily enables hot fluid to be transported from depth to the surface. It is shown that the locations of predicted outflow vents coincide with those of hot springs in the area.  相似文献   
7.
We present a study on human perception of map complexity, with the objective of better understanding design decisions that may lead to undesirable levels of complexity in web maps. We compare three complexity metrics to human ratings of complexity obtained through a user survey. Specifically, we use two algorithmic approaches published by others, which measure feature congestion (FC) and subband entropy (SE), as well as our own approach of counting object types rather than individual objects. We compare these metrics with each other as well as with human complexity ratings for three maps of the same area from map providers Google Maps, Bing Maps, and OpenStreetMap. Each map design is assessed at three different scales (levels of detail). We find that (1) the FC and SE metrics appear to be adequate predictors of what humans consider complex; (2) object-type counts are slightly less successful at predicting human-rated complexity, implying that clutter is more important in perceived complexity than diversity of symbology; and (3) generalization choices do impact human complexity ratings. These findings contribute to our understanding of what makes a map complex, with implications for designing maps that are easy to use.  相似文献   
8.
Afyonkarahisar is a very important geothermal province of western Anatolia and has low and medium enthalpy geothermal areas. This study has been carried out for the preparation of distribution maps of soil gases (radon and carbon dioxide) and shallow soil temperature and the exploration of permeable tectonic regions associated with geothermal systems and reveal the origins of radon and carbon dioxide gases. The western district of the study area is characterized by the high radon concentration (168.30 kBq/m3), carbon dioxide ratio (0.30%), and soil temperature (21.0 °C) values. Fethibey and Demirçevre faults, which allow the circulation of geothermal fluids, have been detected in the distribution maps of radon, carbon dioxide, and shallow depth temperature and the directions of the curves in these maps correspond to the strikes of Demirçevre faults. The effect of the fault plays an important role in the change of carbon dioxide concentration along the W-E directional geological section prepared to determine the change of soil gas and shallow depth temperature values depending on lithological differences, fault existence, and geothermal reservoir depth. On the other hand, it was determined that Rn222 concentration and soil temperature changed as a function of geothermal reservoir depth or lithological difference. Tuffs in Köprülü volcano-sedimentary units are the main source of radon due to their higher uranium contents. Besides, the carbon dioxide in Ömer–Gecek soils has geothermal origin because of the highest carbon dioxide content (99.3%) in non-condense gas. The similarities in patterns of soil temperature, radon, and carbon dioxide indicate that the variation in soil temperatures is related to radon and carbon dioxide emissions. It is concluded that soil gas and temperature measurements can be used to determine the active faults in the initial stage of geothermal exploration successfully.  相似文献   
9.
In this study, soil radon levels have been measured for the first time across the Ganos fault (GF), which is known as the western part of the North Anatolian Fault Zone. LR 115 Type 2 Solid State Nuclear Track Detectors (time integrated) have been applied to determine soil gas radon levels, and the survey was performed in 16 stations along the fault line. The results showed that soil gas radon concentrations and variation of concentration levels are comparable high along the fault line. It is also observed that in the middle of the Ganos Fault, fairly elevated radon levels were detected. These can be related to the activity of the fault lines. It is confirmed that the study area has a very active tectonic structure and is great location for analyzing radon variations.  相似文献   
10.
This study was performed at an area of 50?×?48 m2 being defined as a new settlement in the northeast of Sivas. In the study, the discontinuities that are not deep and their geophysical characteristics were examined by the GPR and MASW methods. For interpretation, GPR cross sections were prepared as 2D–3D, and MASW cross sections were prepared as 2D. As for geophysical cross sections, about 10 m depth was examined. It was understood that the reflections observed in the form of hyperbolas in GPR cross sections correspond to areas having low S wave velocity (Vs) in MASW cross sections. It was understood that the S wave velocities are lower than 653 m/s, that the seismic velocities in between 653 and 275 m/s indicate partially deteriorated areas and that the S wave velocities of unweathered gypsums are higher than 1275 m/s at these low-velocity zones. Thus, it was thought that the fill material that may arise in the fracture, crack and deterioration areas arises from intercalation and clastic gypsum units, and that it plays a role in having low value S wave velocities. In all the geophysical cross sections, it was understood that the structures with gypsum are intense at the initial 5 m. And a fracture at the south of the study area, that it was estimated might be longer than 40 m, was determined as the largest gypsum structure. It was understood that this fracture starts from a depth of about 5 m in the west and that it slopes down to 7 m depth in the east. According to these results, it was understood that the damage amount arising in time in the gypsum structures from the effect of water may increase, the study area was defined as risky, and the required importance should be attached to these structures especially in foundation engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号