首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   0篇
测绘学   1篇
大气科学   8篇
地球物理   9篇
地质学   4篇
海洋学   11篇
天文学   5篇
自然地理   9篇
  2022年   1篇
  2020年   1篇
  2012年   1篇
  2011年   2篇
  2009年   4篇
  2008年   3篇
  2007年   2篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1977年   1篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1966年   1篇
排序方式: 共有47条查询结果,搜索用时 31 毫秒
1.
2.
A dense bloom of the ichthyotoxic dinoflagellate Karlodinium veneficum was discovered in the Neuse River Estuary, North Carolina, on 19 October 2006 and was associated with four subsequent fish kills. Microscopic, photopigment, DNA, and toxicological techniques confirmed bloom identity and toxicity. High-resolution spatio-temporal data from ship-board and fixed automated sampling stations provided a unique opportunity to investigate the environmental conditions that initiated, maintained, and terminated the K. veneficum bloom. Bloom initiation and growth were favored by high nutrient availability and reduced dispersal during the period of declining riverine discharge after Tropical Storm Ernesto. K. veneficum out-competed other co-occurring dinoflagellates, perhaps because of the production of karlotoxins that are known to act as grazing deterrents and to facilitate mixotrophic feeding. Once the bloom was established, small-scale hydrodynamic processes, coupled with vertical migration, concentrated cells along a frontal convergence to high densities (>200,000 cells per milliliter). By 26 October 2006, wind mixing and possible nutrient stress disrupted the bloom. Release of cell-bound toxins during the bloom collapse likely accounted for the associated fish kill events where fish were reported as exhibiting typical symptoms of karlotoxin poisoning. The dynamics of this bloom underscore the tight control of harmful algal blooms by meteorological forcing, hydrology, and sediment nutrient input in this shallow lagoonal estuary.  相似文献   
3.
The statistics of level crossings and local extremes in concentration fluctuations in plumes dispersing in the atmosphere have been investigated. A set of concentration fluctuation tracer experiments has been utilized to measure the statistical propertics of the upcrossing interval (inter-arrival time between consecutive concentration bursts), excursion duration (persistence or width of concentration bursts), and concentration amplitude (difference between the maximum and minimum concentrations between successive upcrossings) with respect to a range of concentration crossing levels. In particular, the effect of downwind distance and atmospheric stratification on the level-crossing statistics has been studied in detail. It is shown that the effect of increasing atmospheric stability on level-crossing statistics is similar to the effect of increasing distance from the source in the sense that level-crossing statistics of concentration fluctuations in stable stratification resemble those in neutral stratification, but at a greater downwind distance. It is also found that the distribution of the interval between consecutive upcrossings of a concentration level, as well as the duration of an excursion across a concentration level, can be approximated by a lognormal distribution, whereas the distribution of the concentration amplitude is best characterized by a gamma distribution. Some implications of these results for the modeling of level-crossing statistics of concentration fluctuations are discussed.  相似文献   
4.
The ability of seismological criteria to identify earthquakes from underground explosions depends partly on the orientation of the earthquake source. Well-determined double-couple moment tensor solutions for a large number of earthquakes have been published in the Harvard centroid moment tensor (CMT) and United Slates Geological Survey (USGS) catalogues. Statistical analyses of these catalogues indicate that the distribution of the orientation of earthquake mechanisms is not random. The distribution of the T axes shows significant clustering around the downward vertical, indicating that a larger number of earthquake mechanisms radiate compressional P -wave energy to teleseismic distances from near the maximum of the radiation pattern than is predicted if earthquake sources are randomly oriented double couples. The clustered T axes correspond to compressional dip-slip mechanisms, and it is this type of mechanism which is believed to cause both the m b: M s (the ratio of body-wave to surface-wave magnitude) and first-motion criteria to misidentify an earthquake as an explosion.  相似文献   
5.
6.
7.
8.
Drying estuarine sandbanks experience only that part of the tidal cycle around high water. In a partially progressive tidal wave, this means that the duration of the flood over the sandbank will be greater than that of the ebb: a process of tidal rectification. In this paper, we propose the hypothesis that this leads to flood-directed tidal residual currents over drying sandbanks. The hypothesis is tested by observation and a 2-D hydrodynamical model in the Conwy estuary, a vertically well-mixed macrotidal estuary in North Wales. The observations include tide gauge data, tidal cycle boat surveys, and fixed current meter data. The data show weak flood-directed residual currents over a drying sandbank and much stronger ebb-directed residuals in the channels along the sides of the sandbank. The model reproduces the observations in the vicinity of the sandbank and shows that the tidal rectification mechanism produces a general pattern of residual circulation in the estuary, with flood-directed flow in the drying areas and ebb-directed flow in the channels. The flood residuals are most marked near the estuary mouth where the tidal wave is most progressive in nature. The main application of this mechanism is believed to be in the transport of bedload sediment. The flood-directed residuals will tend to move the tops of the sandbanks upstream.  相似文献   
9.
Debris flows generated during rain storms on recently burned areas have destroyed lives and property throughout the Western U.S. Field evidence indicate that unlike landslide-triggered debris flows, these events have no identifiable initiation source and can occur with little or no antecedent moisture. Using rain gage and response data from five fires in Colorado and southern California, we document the rainfall conditions that have triggered post-fire debris flows and develop empirical rainfall intensity–duration thresholds for the occurrence of debris flows and floods following wildfires in these settings. This information can provide guidance for warning systems and planning for emergency response in similar settings.Debris flows were produced from 25 recently burned basins in Colorado in response to 13 short-duration, high-intensity convective storms. Debris flows were triggered after as little as six to 10 min of storm rainfall. About 80% of the storms that generated debris flows lasted less than 3 h, with most of the rain falling in less than 1 h. The storms triggering debris flows ranged in average intensity between 1.0 and 32.0 mm/h, and had recurrence intervals of two years or less. Threshold rainfall conditions for floods and debris flows sufficiently large to pose threats to life and property from recently burned areas in south-central, and southwestern, Colorado are defined by: I = 6.5D 0.7 and I = 9.5D 0.7, respectively, where I = rainfall intensity (in mm/h) and D = duration (in hours).Debris flows were generated from 68 recently burned areas in southern California in response to long-duration frontal storms. The flows occurred after as little as two hours, and up to 16 h, of low-intensity (2–10 mm/h) rainfall. The storms lasted between 5.5 and 33 h, with average intensities between 1.3 and 20.4 mm/h, and had recurrence intervals of two years or less. Threshold rainfall conditions for life- and property-threatening floods and debris flows during the first winter season following fires in Ventura County, and in the San Bernardino, San Gabriel and San Jacinto Mountains of southern California are defined by I = 12.5D0.4, and I = 7.2D0.4, respectively. A threshold defined for flood and debris-flow conditions following a year of vegetative recovery and sediment removal for the San Bernardino, San Gabriel and San Jacinto Mountains of I = 14.0D0.5 is approximately 25 mm/h higher than that developed for the first year following fires.The thresholds defined here are significantly lower than most identified for unburned settings, perhaps because of the difference between extremely rapid, runoff-dominated processes acting in burned areas and longer-term, infiltration-dominated processes on unburned hillslopes.  相似文献   
10.
A correct understanding of the way in which light interacts with suspended particles is essential for quantitative interpretation of satellite visible band imagery of turbid shelf seas and estuaries. In this paper we describe new optical observations at 90 stations in the tidally energetic waters along the south and west coasts of Britain. The cross sectional area of the particles in suspension has been measured with a LISST laser diffraction instrument. Light scattering and absorption coefficients have been determined by applying Kirk’s method to radiometric measurements at 6 wavelengths. Results show that the scattering coefficient increases linearly with particle cross sectional area A per unit volume of water with a slope (scattering efficiency) of 1.96 (standard error 0.08) at 665 nm. Particle absorption coefficients aP also increase with particle cross sectional area but at the most turbid stations, particle absorption per unit area (aP/A) is observed to increase with the mean size of the particles in suspension. The particles are mostly mineral flocs which become more opaque as they grow larger and the photon path length through them increases. The implication of these results for remote sensing is that reflectance in the red part of the spectrum, which mainly depends on light scattering, is proportional to the cross sectional area of particles in suspension. Reflectance measurements in the green and blue parts of the spectrum, where particle absorption becomes more important, depend on the diameter of the particles as well as their cross sectional area. We show that simultaneous measurements of reflectance in the red and green parts of the spectrum can be used to derive both the area and size of the particles in suspension.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号