首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
地球物理   8篇
地质学   2篇
  2021年   3篇
  2020年   1篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
An integrated magnetobiochronology of the Miyazaki Pliocene–Pleistocene succession in the Miyazaki area, southwest Japan, was established using planktic foraminiferal and calcareous nannofossil biostratigraphy together with paleomagnetic data. The upper Miyazaki succession in the northern Miyazaki region can be divided into the Takanabe, Hisamine (redefined), and Higoyashiki (new) Formations, in ascending order. A depositional hiatus between the Hisamine Formation and the Takanabe and/or older formations was also identified based on integrated magnetobiostratigraphy from five sections including the Nagatani River (NGT) section through the uppermost Miyazaki succession. The hiatus, herein called the Hisamine unconformity, is equivalent to the Kurotaki unconformity between the Miura and Kazusa groups of the Boso Peninsula in central Japan. The depositional hiatus recognised in the lower Pleistocene of Pacific coastal areas in southwestern and central Japan may have resulted from tectonic activity associated with a change in the subduction direction of the Philippine Sea plate, which commenced prior to ca. 2.2 Ma. The youngest unit just below the hiatus is the upper part of the Takanabe Formation in the NGT section. The NGT section represents the continuous Late Pliocene to earliest Pleistocene sequence including the Gauss/Matuyama boundary and is here proposed as the type section for the Pliocene/Pleistocene boundary in Japan, which the IUGS ratified as the base of the Gelasian in 2009.  相似文献   
2.
Shun  Chiyonobu  Tokiyuki  Sato  Reika  Narikiyo  Makoto  Yamasaki 《Island Arc》2006,15(4):476-482
Abstract   The late Quaternary calcareous nannofossil assemblages from Ocean Drilling Program Holes 807A and 846B, located in the western and eastern equatorial Pacific Ocean, respectively, were analyzed to clarify changes in surface-water conditions during the last 500 000 years. The uppermost Quaternary sediments in both holes contain abundant nannofossils, and their assemblages are characterized by high species diversity. The absolute abundances of coccoliths (specimens/g) and relative numbers of small reticulofenestrids decreased drastically in both holes between 0.3 and 0.2 Ma, whereas the relative abundance of warm-water species and Florisphaera profunda increased suddenly at this time. These data indicate that upwelling around the western and eastern equatorial Pacific regions weakened after 0.2 Ma, which was caused by a decrease in trade-wind strength.  相似文献   
3.
Abstract   The lithology of shallow-water carbonates collected from 19 sites on 16 seamounts in six areas of the northwestern Pacific Ocean using the Deep-sea Boring Machine System are described. The areas include the Amami Plateau, Daito Ridge, Oki-Daito Ridge, Urdaneta Plateau, Kyushu-Palau Ridge and Ogasawara Plateau. Chronological constraint is provided by calcareous nannofossil biostratigraphy, planktonic foraminiferal biostratigraphy, larger foraminiferal biostratigraphy and strontium (Sr) isotope stratigraphy. Large amounts of shallow-water carbonates accumulated on the seamounts during the Oligocene, a relatively cool period, whereas limited carbonate deposits formed during the Early Miocene, a relatively warm period. This might indicate that deposition of shallow-water carbonates on seamounts in the northwestern Pacific Ocean was not necessarily controlled by climatic conditions, but was related to volcanism and tectonics that served as foundations for reef/carbonate-platform formation. Remarkable differences in biotic composition exist between Cretaceous and Cenozoic shallow-water carbonates. Late Cretaceous shallow-water carbonates are distinguished by the occurrence of rudists, solenoporacean algae and microencrusters. Middle Eocene to Early Oligocene shallow-water carbonates are dominated by Halimeda or nummulitid and discocyclinid larger foraminifers. Scleractinian corals became common from the Oligocene onward. Nongeniculate coralline algae and larger foraminifers were common to abundant throughout the Eocene to the Pleistocene. The replacement of major carbonate producers in the shallow-water carbonate factory during post-Cretaceous time is in accordance with previous studies and is considered to reflect a shift in seawater chemistry.  相似文献   
4.
Bathymetric mapping and observations of the seafloor using a remotely operated vehicle (ROV, Hyper‐Dolphin 3K) were carried out on the slopes of the Miyako‐Sone submarine platform, east of Miyako‐jima in the Ryukyu Islands, northwestern Pacific Ocean. The bathymetric map indicates that terraces are present at water depths of approximately 140 m, 330 m, 400 m, and 680 m on the northwestern slope of the platform. A number of NW–SE trending lineaments, probably faults, extend perpendicular to the axis of the Ryukyu Island Arc. Two ROV surveys were conducted at water depths ranging from 519 m (on the slope) to 121 m (shallowest part of the platform). The surveys revealed that well‐indurated carbonate rocks are exposed at terrace margins and on upper slopes, and that the lower slopes are covered with modern sediments consisting of unconsolidated, coarse‐sand‐sized bioclastic carbonates. Calcareous nannofossils from the well‐indurated carbonate rocks indicate a Middle–Late Pleistocene age, which suggests that the rocks correlate with the Quaternary reef and fore‐reef deposits of the Ryukyu Group (Ryukyu Limestone) on the Ryukyu Islands. No siliciclastic deposits corresponding to the upper Miocene–lower Pleistocene Shimajiri Group (as exposed on Okinawa‐jima and Miyako‐jima islands) were recovered during the surveys. Coeval well‐indurated carbonate rocks, all of which formed in a similar sedimentary environment, have been downthrown towards the west due to displacements on the western sides of normal faults. Subsidence of the Miyako‐Sone submarine platform was the result of large vertical displacements on such normal faults. The timing of initial subsidence cannot be tightly constrained, but the presence of the youngest limestone at progressively lower levels towards the west suggests the subsidence continued until after 0.265 Ma.  相似文献   
5.
Middle–Late Miocene age siliceous formations outcropping along the northwestern side of Honshu Island are considered prospective source rocks for hydrocarbons. An analysis of geophysical, sedimentological, and geochemical properties is essential to evaluate the formations' source potential, and to understand the factors that determined the accumulation and preservation of organic matter. This study investigates the Middle–Late Miocene geological record of the Tsugaru back‐arc basin, located in the western part of Aomori prefecture, through an analysis of a 200 m long portion of a core from the DTH27‐1 well; this core is composed of the diatomaceous siltstones of the Akaishi Formation and the siliceous mudstones of the Odoji Formation. Sedimentological and geophysical characterization showed that the Akaishi Formation's diatomaceous siltstones are mostly massive and bioturbated, have low magnetic susceptibility, and demonstrate moderate natural radioactivity. Although the Odoji Formation's siliceous mudstones are massive, they have exceedingly low magnetic susceptibility and high natural radioactivity. Geochemical data from a Rock‐Eval Pyrolysis such as total organic carbon and generative potential (S1 + S2) revealed that, in the Tsugaru area, only the Odoji Formation is a likely prospective source rock for hydrocarbons. On the other hand, Tmax values indicate that both the formations are thermally immature for generating hydrocarbons. The difference between the Akaishi and Odoji Formation in the sedimentological facies, in terms of the degree of bioturbation and the organic carbon content, indicates variations in lithological properties, such as porosity and grain size; moreover, this difference indicates a variation in the paleo‐oxygenation of bottom waters, with the transition from oxygen‐deficient conditions in the Middle Miocene to the more oxygenated conditions in the Late Miocene. Both the lithological and paleo‐environmental factors possibly influenced the organic richness in the two formations.  相似文献   
6.
Sedimentological, geochemical, and chronological analyses were carried out on 18 carbonate rock samples collected at depths of 938, 1085, and 3354 m on the western slope of Minamitorishima (Marcus Island), which is located near the western margin of the Pacific Plate. Four groups of carbonate rocks were distinguished: a mollusk-rich limestone, a coral-rich dolomite, a foraminiferal-nannofossil packstone, and a phosphatized mudstone/wackestone. The mollusk-rich limestone is characterized by the dominance of bivalves (including rudists) and gastropod shells. Strontium isotope ratios (87Sr/86Sr) and Mesorbitolina ex gr. texana (a large benthic foraminifer) indicate that the shallow-water carbonates were deposited during the late Aptian–early Albian (ca. 123–111 Ma). The coral-rich dolomite is characterized by abundant scleractinian corals and nongeniculate coralline algae associated with encrusting acervulinid foraminifers. The biotic composition is similar to that of the Oligocene–Pleistocene carbonates reported from other seamounts in the northwestern Pacific. Geochemical data show that the coral-rich carbonates were dolomitized at 9.5–6.8 Ma (Tortonian–Messinian) and that normal seawater was the most likely parent fluid. The foraminiferal-nannofossil packstone is a semi-consolidated foraminiferal-nannofossil ooze and was deposited during the Pleistocene (0.99–0.45 Ma). The phosphatized mudstone/wackestone is marked by the absence of macrofossils and the presence of traces of planktic foraminifers. Although its depositional age is not constrained, the Sr isotope ratios indicate that the phosphatization occurred at 33.2–28.9 Ma. After the deposition of the Cretaceous shallow-water carbonates, including the mollusk-rich limestone, Minamitorishima was drowned and its top was covered with a pelagic cap, represented by the mudstone/wackestone. The late Eocene–early Oligocene volcanism (40.2–33.2 Ma) caused episodic uplift and returned the top of Minamitorishima to a shallow-water environment. After the early Oligocene phosphatization of the pelagic cap, coral reefs flourished on the top of this island. The reef limestone was dolomitized during the Tortonian–Messinian.  相似文献   
7.
We established a high-resolution calcareous nannofossil biostratigraphy for the late Pliocene–Pleistocene by analyzing a 242 m-thick, continuous sedimentary succession from Ocean Drilling Program Site 1146, Hole A, in the South China Sea (SCS). A total of 14 calcareous nannofossil datums were detected in the SCS succession. They are, in descending order: first occurrence (FO) of Emiliania huxleyi, last occurrence (LO) of Pseudoemiliania lacunosa, LO of Reticulofenestra asanoi, FO of Gephyrocapsa parallela, FO of R. asanoi, LO of large Gephyrocapsa spp., FO of large G. spp., FO of Gephyrocapsa oceanica, FO of Gephyrocapsa caribbeanica, LO of Calcidiscus macintyrei, LO of Discoaster brouweri, LO of Discoaster pentaradiatus, LO of Discoaster surculus, and LO of Discoaster tamalis. The FO of E. huxleyi was not precisely detected due to poor preservation and dissolution of nannofossils in the underlying strata. We refined the previous calcareous nannofossil biostratigraphy in the SCS by identifying Gephyrocapsa species and four evolutionary extinction events of the genus Discoaster. The proposed calcareous nannofossil biostratigraphy correlates with those reported in other terrestrial and marine areas/sites and global benthic foraminiferal δ18O records. The age–depth curves based on nannofossil biostratigraphy indicate a significant increase in the sedimentation rates at the LO of R. asanoi (0.91–0.85 Ma). The timing of this increase corresponds to reef expansion in the Ryukyu Islands linked to a stepwise increase in Kuroshio Current intensity. This timing is broadly coeval with a sea surface temperature increase of ∼2 °C in the northwestern Pacific due to expansion of the Western Pacific Warm Pool towards the north and south subtropical regions. This can be explained by increased weathering and erosion of terrestrial areas in glacial periods and increased rainfall causing higher sediment transport in interglacial periods, which were both linked to Middle Pleistocene Transition-related climatic changes.  相似文献   
8.
9.
The late Cenozoic geohistory of the Ryukyu arc is closely related to the rifting history of the Okinawa Trough. The submarine geology and stratigraphy of areas around Kume Island, which is situated near the eastern rifted margin of the middle Okinawa Trough, provide key constraints to understand the timing and mode of Okinawa Trough rifting. Here we report the lithology of sedimentary rocks dredged along slopes of ~1000-m-deep sea knolls located north and northwest off Kume Island, and their depositional ages determined by calcareous nannofossils and strontium (Sr) isotope analyses. Various types of sedimentary rocks, such as siltstone, very fine-grained sandstone, medium-grained sandstone, fossiliferous coarse-grained sandstone, and tuffaceous sandstone, were recovered at two dredge sites. These sedimentary rocks are lithologically similar to those in the Aka Formation and a part of the Maja Formation of the Shimajiri Group in nearby Kume Island. Calcareous nannofossils and Sr isotope analyses indicate their depositional ages from the early Pliocene to the early Pleistocene, which are generally consistent with those of the Aka Formation. The finding of the dredged rocks similar in lithology and ages to the Aka Formation indicates that marine deltaic area continued toward north and northwest from Kume Island during these periods. The presence of the Shimajiri Group equivalent sedimentary rocks at the dredge sites are likely related to the main rifting of the Okinawa Trough after ca. 2 Ma in the central Ryukyus.  相似文献   
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号