首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
地球物理   3篇
地质学   5篇
海洋学   2篇
天文学   1篇
自然地理   1篇
  2022年   1篇
  2020年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  1995年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
A two dimensional implicit finite volume scheme for solving the shallow-water equations is developed. The effects of the Coriolis force, surface wind stress, and waves are included. A non-uniform rectilinear forward staggered grid is used with Cartesian coordinates. The time integration is performed using the Euler implicit technique. The convective flux is treated using the deferred correction method. The viscous terms are discretized using a second order central difference approximation. The SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm is used for coupling the velocity components and the water elevation gradient for the water level correction. The system of equations is solved sequentially using the Strongly Implicit Procedure (SIP). To simulate wave driven current, a phase averaged wave model is used first to simulate wave transformation and calculate radiation stresses. The performance of the developed model is validated for different sources of external forces and different combinations of boundary conditions. The validation cases include tidal circulation in a harbor and wave induced currents behind a breakwater parallel to the coastline. The model is finally applied to simulate the flow pattern in a closed artificial lagoon and along the coastline near Damietta Port located along the Northern coast of Egypt. Results of the developed model agree well with the published results for the considered cases.  相似文献   
2.
Soil air permeability plays a decisive role in the effectiveness of soil vapour extraction (SVE) for the removal of volatile organic contaminants (VOCs) from soil. The objective of this work is to study the change of the soil air permeability during continuous venting and removal of contaminant from a polluted soil. SVE pilot experiments were conducted to investigate the interaction of soil air permeability with total liquids saturation. Oppositely to previous studies, air permeability was measured by fitting pressure data measured in a 3D laboratory venting pilot to an analytical airflow solution. The experimental correlation was compared with two different correlations published previously. A difference was observed between measured and calculated air relative air permeabilities especially for low water saturation degrees. The importance of the correct estimate of relative permeability was then illustrated by comparing vacuums and streamlines calculated using measured permeability and permeability values estimated with the two correlations tested here. Results show that an inappropriate assessment of relative permeability may engender significant errors in designing an SVE system. The second part of this work reports on the influence of air permeability change on the prediction capability of an SVE mathematical model. A significant difference between simulated breakthrough curves, estimated using firstly the relationship established experimentally and secondly the two other correlations, was observed. These results lead us to say that inadequate characterization of the air permeability change may generate significant errors in removal rate and closure time estimates.  相似文献   
3.
4.
The circular restricted three-body problem is considered to model the dynamics of an artificial body submitted to the attraction of two planets. Minimization of the fuel consumption of the spacecraft during the transfer, e.g. from the Earth to the Moon, is considered. In the light of the controllability results of Caillau and Daoud (SIAM J Control Optim, 2012), existence for this optimal control problem is discussed under simplifying assumptions. Thanks to Pontryagin maximum principle, the properties of fuel minimizing controls is detailed, revealing a bang-bang structure which is typical of L1-minimization problems. Because of the resulting non-smoothness of the Hamiltonian two-point boundary value problem, it is difficult to use shooting methods to compute numerical solutions (even with multiple shooting, as many switchings on the control occur when low thrusts are considered). To overcome these difficulties, two homotopies are introduced: One connects the investigated problem to the minimization of the L2-norm of the control, while the other introduces an interior penalization in the form of a logarithmic barrier. The combination of shooting with these continuation procedures allows to compute fuel optimal transfers for medium or low thrusts in the Earth–Moon system from a geostationary orbit, either towards the L 1 Lagrange point or towards a circular orbit around the Moon. To ensure local optimality of the computed trajectories, second order conditions are evaluated using conjugate point tests.  相似文献   
5.
The Africa–Arabia plate boundary comprises the Red Sea oceanic spreading centre and the left‐lateral Dead Sea Fault Zone (DSFZ); however, previous work has indicated kinematic inconsistency between its continental and oceanic parts. The Palmyra Fold Belt (PFB) splays ENE from the DSFZ in SW Syria and persists for ~400 km to the River Euphrates, but its significance within the regional pattern of active crustal deformation has hitherto been unclear. We report deformation of Euphrates terraces consistent with Quaternary right‐lateral transpression within the PFB, indicating anticlockwise rotation (estimated as 0.3° Ma?1 about 36.0°N 39.8°E) of the block between the PFB and the northern DSFZ relative to the Arabian Plate interior. The northern DSFZ is shown to be kinematically consistent with the combination of Euler vectors for the PFB and the Red Sea spreading, resolving the inconsistency previously evident. The SW PFB causes a significant earthquake hazard, previously unrecognized, to the city of Damascus.  相似文献   
6.
Major, trace element and isotopic (Sr, Nd, Pb) data and unspiked K–Ar ages are presented for Quaternary (0.90–0.95 Ma old) basalts from the Hayyabley volcano, Djibouti. These basalts are LREE-depleted (Lan/Smn = 0.76–0.83), with 87Sr/86Sr ratios ranging from 0.70369 to 0.70376, and rather homogeneous 143Nd/144Nd (εNd = + 5.9–+ 7.3) and Pb isotopic compositions (206Pb/204Pb = 18.47–18.55, 207Pb/204Pb = 15.52–15.57, 208Pb/204Pb = 38.62–38.77). They are very different from the underlying enriched Tadjoura Gulf basalts, and from the N-MORB erupted from the nascent oceanic ridges of the Red Sea and Gulf of Aden. Their compositions closely resemble those of (1) depleted Quaternary Manda Hararo basalts from the Afar depression in Ethiopia and (2) one Oligocene basalt from the Ethiopian Plateau trap series. Their trace element and Sr, Nd, Pb isotope systematics suggest the involvement of a discrete but minor LREE-depleted component, which is probably an intrinsic part of the Afar plume.  相似文献   
7.
This study presents a practical method of irregular wave generation with given spectral characteristics. The method used is iterative. In order to use this method, a previous knowledge of the wave-paddle transfer function is required. The spectral analysis of the wave obtained by this method is realized by an original technique which allows the investigator to analytically obtain a smooth form of the signal spectrum from its approximated autocorrelation function by complex exponentials.  相似文献   
8.
A flow sheet was developed to recover thorium from Egyptian monazite sands. The results of a detailed investigation on the extraction and stripping of thorium in the hydrous oxide are obtained after alkaline dissolution followed by leaching with alkaline carbonate solutions. This cake was dissolved in 4 M HNO3 and thorium was extracted selectively by a counter-current extraction system using a mixer–settler contactor and Aliquat-336 in kerosene as extractant. The results show that 2 h of continuous operation are necessary to reach the steady state condition for the process. The extraction efficiency is found to be 80% and the stripping efficiency is 82%.  相似文献   
9.
To reduce drilling uncertainties, zero-offset vertical seismic profiles can be inverted to quantify acoustic properties ahead of the bit. In this work, we propose an approach to invert vertical seismic profile corridor stacks in Bayesian framework for look-ahead prediction. The implemented approach helps to successfully predict density and compressional wave velocity using prior knowledge from drilled interval. Hence, this information can be used to monitor reservoir depth as well as quantifying high-pressure zones, which enables taking the correct decision during drilling. The inversion algorithm uses Gauss–Newton as an optimization tool, which requires the calculation of the sensitivity matrix of trace samples with respect to model parameters. Gauss–Newton has quadratic rate of convergence, which can speed up the inversion process. Moreover, geo-statistical analysis has been used to efficiently utilize prior information supplied to the inversion process. The algorithm has been tested on synthetic and field cases. For the field case, a zero-offset vertical seismic profile data taken from an offshore well were used as input to the inversion algorithm. Well logs acquired after drilling the prediction section was used to validate the inversion results. The results from the synthetic case applications were encouraging to accurately predict compressional wave velocity and density from just a constant prior model. The field case application shows the strength of our proposed approach in inverting vertical seismic profile data to obtain density and compressional wave velocity ahead of a bit with reasonable accuracy. Unlike the commonly used vertical seismic profile inversion approach for acoustic impedance using simple error to represent the prior covariance matrix, this work shows the importance of inverting for both density and compressional wave velocity using geo-statistical knowledge of density and compressional wave velocity from the drilled section to quantify the prior covariance matrix required during Bayesian inversion.  相似文献   
10.
The explosive growth of geographic and temporal data has attracted much attention in information retrieval (IR) field. Since geographic and temporal information are often available in unstructured text, the IR task becomes a non-straightforward process. In this article, we propose a novel geo-temporal context mining approach and a geo-temporal ranking model for improving the search performance. Queries target implicitly ‘what’, ‘when’ and ‘where’ components. We model geographic and temporal query-dependent frequent patterns, called contexts. These contexts are derived based on extracting and ranking geographic and temporal entities found in pseudo-relevance feedback documents. Two methods are proposed for inferring the query-dependent contexts: (1) a frequency-based statistical approach and (2) a frequent pattern mining approach using a support threshold. The derived geographic and temporal query contexts are then exploited into a probabilistic ranking model. Finally, geographic, temporal and content-based scores are combined together for improving the geo-temporal search performance. We evaluate our approach on the New York Times news collection. The experimental results show that our proposed approach outperforms significantly a well-known baseline search, namely the probabilistic BM25 ranking model and state-of-the-art approaches in the field as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号