首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地球物理   4篇
地质学   3篇
  2016年   3篇
  2014年   2篇
  2011年   1篇
  2009年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
In this paper a recently developed multimode pushover procedure for the approximate estimation of structural performance of asymmetric in plan buildings under biaxial seismic excitation is evaluated. Its main idea is that the seismic response of an asymmetric multi-degree-of-freedom system with \(N\) degrees of freedom under biaxial excitation can be related to the responses of \(N\) ‘modal’ equivalent single-degree-of-freedom (E-SDOF) systems under uniaxial excitation. The steps of the proposed methodology are quite similar to those of the well-known modal pushover analysis. However, the establishment of the (E-SDOF) systems is based on a new concept, in order to take into account multidirectional seismic effects. The proposed methodology does not require independent analysis in the two orthogonal directions and therefore the application of simplified superposition rules for the combination of seismic component effects is avoided. After a brief outline of the theoretical background and the application process, an extensive evaluation study is presented, which shows that, in general, the proposed methodology provides a reasonable estimation for the vast majority of the calculated response parameters.  相似文献   
2.
3.
A bridge health monitoring system is presented based on vibration measurements collected from a network of acceleration sensors. Sophisticated structural identification methods, combining information from the sensor network with the theoretical information built into a finite element model for simulating bridge behavior, are incorporated into the system in order to monitor structural condition, track structural changes and identify the location, type and extent of damage. This work starts with a brief overview of the modal and model identification algorithms and software incorporated into the monitoring system and then presents details on a Bayesian inference framework for the identification of the location and the severity of damage using measured modal characteristics. The methodology for damage detection combines the information contained in a set of measurement modal data with the information provided by a family of competitive, parameterized, finite element model classes simulating plausible damage scenarios in the structure. The effectiveness of the damage detection algorithm is demonstrated and validated using simulated modal data from an instrumented R/C bridge of the Egnatia Odos motorway, as well as using experimental vibration data from a laboratory small-scaled bridge section.  相似文献   
4.
A series of dynamic centrifuge tests were conducted on square aluminum model tunnels embedded in dry sand. The tests were carried out at the Schofield Centre of the Cambridge University Engineering Department, aiming to investigate the dynamic response of these types of structures. An extensive instrumentation scheme was employed to record the soil-tunnel system response, which comprised of miniature accelerometers, total earth pressures cells and position sensors. To record the lining forces, the model tunnels were strain gauged. The calibration of the strain gauges, the data from which was crucial to furthering our understanding on the seismic performance of box-type tunnels, was performed combining physical testing and numerical modelling. This technical note summarizes this calibration procedure, highlighting the importance of advanced numerical simulation in the calibration of complex construction models.  相似文献   
5.
The mobility of inorganic pollutants is of key concern for a range of industrial and engineering applications of fly ash produced during the combustion of lignite in power generation. This paper investigates the role that the geochemical features of lignite, the ash composition and the partitioning of elements during combustion play in determining leaching properties of lignite fired by-products. The work is based on surveys on three lignite-fired power plants in Greece. Calcium-rich ashes show a high abatement potential for SO2 and other gaseous pollutants. For most elements, the concentrations in the parent lignite and the ashes follow the same trend. Relative enrichments in Cd, Co, Cr, Cu, Mo, Ni, Pb, U, V, W, Zn fingerprint the regional and local geological settings of the lignite basins. The total and leachable concentrations of highly volatile elements are strongly influenced by the interaction with ubiquitous free lime. A broad array of elements is highly insoluble in alkaline ash, while a few oxyanionic-forming elements display substantial mobility. Their mode of occurrence in the parent lignite plays a primary role in the leaching of combustion ashes. The outcomes of this study may assist in addressing the impact of co-firing high ash or high Ca alternative fuels on the leaching properties of combustion by-products.  相似文献   
6.
The paper discusses the seismic response of circular tunnels in dry sand and investigates the efficiency of current seismic analysis methods at extreme lining flexibilities. Initially, a dynamic centrifuge test on a flexible circular model tunnel, embedded in dry sand, is analyzed by means of rigorous full dynamic analysis of the coupled soil–tunnel system, applying various non-linear soil and soil–tunnel interface models. The numerical results are compared to the experimental ones, aiming to better understand the recorded response and calibrate the numerical models. Then a series of numerical analyses are conducted using the validated numerical model, in order to investigate the effect of the tunnel lining rigidity on the dynamic response of the soil–tunnel system. In parallel, the accuracy of currently used simplified analysis methods is evaluated, by comparing their predictions with the results of the a priori more accurate and well validated numerical models. The comparative analyses allow us to highlight and discuss several crucial aspects of the soil-tunnel system seismic response, including (1) the post-earthquake residual values of the lining forces, which are amplified with the increase of the flexibility of the tunnel and (2) the importance of the soil-tunnel interface conditions. It is finally concluded that simplified analysis methods may provide a reasonable framework for the analysis at a preliminary stage, under certain conditions.  相似文献   
7.
The paper summarizes the numerical simulation of the round robin numerical test on tunnels performed in Aristotle University of Thessaloniki. The main issues of the numerical simulation are presented along with representative comparisons of the computed response with the recorded data. For the simulation, the finite element method is implemented, using ABAQUS. The analyses are performed on prototype-scale models under plane strain conditions. While the tunnel behavior is assumed to be elastic, the soil nonlinear behavior during shaking is modeled using a simplified kinematic hardening model combined with a von Mises failure criterion and an associated plastic flow rule. The model parameters are adequately calibrated using available laboratory test results for the specific fraction of sand. The soil–tunnel interface is also accounted and simulated adequately. The effect of the interface friction on the tunnel response is investigated for one test case, as this parameter seems to affect significantly the tunnel lining axial forces. Finally, the internal forces of the tunnel lining are also evaluated with available closed-form solutions, usually used in the preliminary stages of design and compared with the experimental data and the numerical predictions. The numerical analyses can generally reproduce reasonably well the recorded response. Any differences between the experimental data and the numerical results are mainly attributed to the simplification of the used model and to differences between the assumed and the actual mechanical properties of the soil and the tunnel during the test.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号