首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   3篇
大气科学   1篇
地球物理   2篇
地质学   2篇
天文学   1篇
自然地理   4篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2005年   2篇
排序方式: 共有10条查询结果,搜索用时 859 毫秒
1
1.
In the northern highlands of Ethiopia degraded hillsides have been allocated to landless farmers for tree planting since the mid-1990s. The authors assessed the effect of hillside plantations on the livelihoods of landless farmers in the eastern part of the Tigray Region by using transect walks, focus group discussions, and pretested questionnaires. A matched-pairs design was used to compare crop yields, livestock holdings per household, and household incomes to test the differences before and eight years after the intervention. In addition, regression analysis was used to capture variables influencing hillside management. The findings revealed that the plantations significantly increased crop yields, livestock holdings, and the household incomes of all beneficiaries. In addition, tree planting on degraded hillsides had a positive impact on the livelihoods of formerly landless farmers. However, moisture stress and free-ranging livestock were crucial problems. The findings are highly relevant in a conservation context because many existing or planned hillside allocations to landless farmers are located on degraded steep slopes that are unsuitable for crop production. Thus, replicating the practice to other areas with similar environment and problems would be worthwhile, although the management should focus on careful planning to avoid conflicts of interest between beneficiaries and non-beneficiaries.  相似文献   
2.
3.
Flood inundation models have been recognized to be a valuable tool to reproduce flow dynamics in a given area and support decision‐making processes on flood management measures. In many cases, in the simulation of flood events, only the main river channel and the associated structures are represented within the model. However, during flood events involving lowland areas, the minor drainage network – and the associated hydraulic structures – may have an important role in conveying flow and determining which areas will be flooded. The objective of this study is to investigate whether – and to what extent – small hydraulic structures in drainage networks have an influence in flooding on lowland areas. The case study for this research is the 1990 flood event which occurred in the lowland plain of the Reno River, in Northern Italy. The study area is mainly used for agricultural purposes and has a drainage system with several small bridges and culverts. The influence of the minor hydraulic structures on flood dynamics was analyzed through a combined use of one‐dimensional (1D) and two‐dimensional (2D) hydraulic models. First, a number of detailed and simplified approaches to represent hydraulic structures in the computational grids were analyzed by means of the HECRAS 1D model. Second, these approaches were implemented and tested in several 2D simulations of the flood event. The simulated inundation extents and flood levels were then compared with the observed data and with each other. The analysis of results showed that simplified schematizations were sufficient to obtain good model predictions of peak inundation extent and flood levels, at least for the present case study. Moreover, the influence of the structures on the peak flood inundation extent and flood levels was found to be limited, whereas it showed to be more significant during the drainage phase of the flood. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
4.
On Tenerife, one of the Canary Islands, a series of clastic dikes and tubular vents is attributed to liquefaction of sediments during a high-intensity paleoearthquake. Geotechnical, geological, tectonic, and mineralogical investigations have been carried out to identify the soil composition and structure, as well as the geological processes operating in the area. Geochronological analysis has indicated an age ranging from 10,081±933 to 3490±473 years BP for the liquefaction features. The area in which these liquefaction features are found has undergone tectonic uplift and is affected by two faults. One of these faults was responsible for displacing the Holocene materials. The paleoearthquake responsible for this liquefaction has been analysed in terms of its peak ground acceleration (pga) and magnitude by back calculation analysis based on the cyclic stress and Ishihara methods. A range of 0.22–0.35g was obtained for the pga, with the value of 0.30g being selected as most representative. From this, an earthquake-modified Mercalli intensity of IMM=IX was estimated for the liquefaction site. The magnitude-bound method and energy-based approaches were used to determine the magnitude of the paleoearthquake, providing a moment magnitude M in the range of 6.4–7.2; M=6.8 is taken as the representative figure.  相似文献   
5.
6.
7.
The Global Warming Potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climatic impact of emissions of different greenhouse gases. The GWP has been subjected to many criticisms because of its formulation, but nevertheless it has retained some favour because of the simplicity of its design and application, and its transparency compared to proposed alternatives. Here, two new metrics are proposed, which are based on a simple analytical climate model. The first metric is called the Global Temperature Change Potential and represents the temperature change at a given time due to a pulse emission of a gas (GTPP); the second is similar but represents the effect of a sustainedemission change (hence GTPS). Both GTPP and GTPS are presented as relative to the temperature change due to a similar emission change of a reference gas, here taken to be carbon dioxide. Both metrics are compared against an upwelling-diffusion energy balance model that resolves land and ocean and the hemispheres. The GTPP does not perform well, compared to the energy balance model, except for long-lived gases. By contrast, the GTPS is shown to perform well relative to the energy balance model, for gases with a wide variety of lifetimes. It is also shown that for time horizons in excess of about 100 years, the GTPS and GWP produce very similar results, indicating an alternative interpretation for the GWP. The GTPS retains the advantage of the GWP in terms of transparency, and the relatively small number of input parameters required for calculation. However, it has an enhanced relevance, as it is further down the cause–effect chain of the impacts of greenhouse gases emissions and has an unambiguous interpretation. It appears to be robust to key uncertainties and simplifications in its derivation and may be an attractive alternative to the GWP.  相似文献   
8.
9.
Gold mining is a tremendously important economic activity in rural districts of Ethiopia. We assessed the impacts of artisanal gold mining on soil and woody vegetation in northern Ethiopia. Estimation of soil loss, plant inventory, group discussions and transect studies were used to address the research questions. We employed t‐test to compare woody species and soil loss between mined and unmined sites. Moreover, we ran one‐way ANOVA to compare the average volume of soil loss among the mining sites. The study shows that gold mining removed colossal volumes of soil from the mining landscape with a significant difference among gold mining sites (P ≤ 0.05). Soil loss between the mined and unmined sites was also significant (P ≤ 0.05). Moreover, gold mining destroyed massive tracts of vegetation. Woody species encountered at plot level decreased from artisanal gold mined to unmined sites (P ≤ 0.05). Moreover, dead trees and exposed tree roots were higher in mined than the unmined areas (P ≤ 0.05). This discouraged regeneration and recruitment of woody vegetation. To conclude, gold mining system converted vegetated sites and farmlands into dysfunctional landscape. Therefore, we suggest that combined rehabilitation efforts are required to overcome the challenges of artisanal gold mining on sustainable land management in northern Ethiopia.  相似文献   
10.
Marginal grabens are major development corridors in Ethiopia, and need to be understood for proper assessment of the hydrological budget. This study investigates the water balance of the Aba’ala graben (553 km2) in the period 2015–2016 under the challenge of data scarcity. We measured the rainfall and river discharge in order to analyse the runoff components of the graben. The rainfall volume in the Aba’ala graben showed erratic behaviour, which led to rapid flood runoff of the major river into the graben bottom. The average annual inflow and outflow of the graben bottom for the period 2015–2016 amounted to 364 and 254 hm3, respectively. However, flood runoff and evapotranspiration had a marked effect on water availability. Water storage took 36% of the water inflow into the graben bottom. Sustainable water management could reduce the temporal variation of the water storage in Aba’ala graben.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号