首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   2篇
大气科学   7篇
地球物理   7篇
地质学   15篇
海洋学   18篇
天文学   34篇
自然地理   18篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   6篇
  2012年   7篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   7篇
  2006年   10篇
  2005年   2篇
  2004年   3篇
  2003年   5篇
  2002年   8篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有99条查询结果,搜索用时 140 毫秒
1.
Building upon our previous work, in which we analyzed smoothed and subsampled velocity data from the Michelson Doppler Imager (MDI), we extend our analysis to unsmoothed, full-resolution MDI data. We also present results from the Helioseismic and Magnetic Imager (HMI), in both full resolution and processed to be a proxy for the low-resolution MDI data. We find that the systematic errors that we saw previously, namely peaks in both the high-latitude rotation rate and the normalized residuals of odd \(a\)-coefficients, are almost entirely absent in the two full-resolution analyses. Furthermore, we find that both systematic errors seem to depend almost entirely on how the input images are apodized, rather than on resolution or smoothing. Using the full-resolution HMI data, we confirm our previous findings regarding the effect of using asymmetric profiles on mode parameters, and also find that they occasionally result in more stable fits. We also confirm our previous findings regarding discrepancies between 360-day and 72-day analyses. We further investigate a six-month period previously seen in \(f\)-mode frequency shifts using the low-resolution datasets, this time accounting for solar-cycle dependence using magnetic-field data. Both HMI and MDI saw prominent six-month signals in the frequency shifts, but we were surprised to discover that the strongest signal at that frequency occurred in the mode coverage for the low-resolution proxy. Finally, a comparison of mode parameters from HMI and MDI shows that the frequencies and \(a\)-coefficients agree closely, encouraging the concatenation of the two datasets.  相似文献   
2.
The internal gravity modes of the Sun are notoriously difficult to detect, and the claimed detection of gravity modes presented by Fossat et al. (Astron. Astrophys.604, A40, 2017) is thus very exciting. Given the importance of these modes for understanding solar structure and dynamics, the results must be robust. While Fossat et al. described their method and parameter choices in detail, the sensitivity of their results to several parameters was not presented. Therefore, we test the sensitivity of the results to a selection of the parameters. The most concerning result is that the detection vanishes when we adjust the start time of the 16.5-year velocity time-series by a few hours. We conclude that this reported detection of gravity modes is extremely fragile and should be treated with utmost caution.  相似文献   
3.
Local glaciers and ice caps (GICs) comprise only ~5.4% of the total ice volume, but account for ~14–20% of the current ice loss in Greenland. The glacial history of GICs is not well constrained, however, and little is known about how they reacted to Holocene climate changes. Specifically, in North Greenland, there is limited knowledge about past GIC fluctuations and whether they survived the Holocene Thermal Maximum (HTM, ~8 to 5 ka). In this study, we use proglacial lake records to constrain the ice‐marginal fluctuations of three local ice caps in North Greenland including Flade Isblink, the largest ice cap in Greenland. Additionally, we have radiocarbon dated reworked marine molluscs in Little Ice Age (LIA) moraines adjacent to the Flade Isblink, which reveal when the ice cap was smaller than present. We found that outlet glaciers from Flade Isblink retreated inland of their present extent from ~9.4 to 0.2 cal. ka BP. The proglacial lake records, however, demonstrate that the lakes continued to receive glacial meltwater throughout the entire Holocene. This implies that GICs in Finderup Land survived the HTM. Our results are consistent with other observations from North Greenland but differ from locations in southern Greenland where all records show that the local ice caps at low and intermediate elevations disappeared completely during the HTM. We explain the north–south gradient in glacier response as a result of sensitivity to increased temperature and precipitation. While the increased temperatures during the HTM led to a complete melting of GICs in southern Greenland, GICs remained in North Greenland probably because the melting was counterbalanced by increased precipitation due to a reduction in Arctic sea‐ice extent and/or increased poleward moisture transport.  相似文献   
4.
In this work, we tackle the challenge of quantitative estimation of reservoir dynamic property variations during a period of production, directly from four-dimensional seismic data in the amplitude domain. We employ a deep neural network to invert four-dimensional seismic amplitude maps to the simultaneous changes in pressure, water and gas saturations. The method is applied to a real field data case, where, as is common in such applications, the data measured at the wells are insufficient for properly training deep neural networks, thus, the network is trained on synthetic data. Training on synthetic data offers much freedom in designing a training dataset, therefore, it is important to understand the impact of the data distribution on the inversion results. To define the best way to construct a synthetic training dataset, we perform a study on four different approaches to populating the training set making remarks on data sizes, network generality and the impact of physics-based constraints. Using the results of a reservoir simulation model to populate our training datasets, we demonstrate the benefits of restricting training samples to fluid flow consistent combinations in the dynamic reservoir property domain. With this the network learns the physical correlations present in the training set, incorporating this information into the inference process, which allows it to make inferences on properties to which the seismic data are most uncertain. Additionally, we demonstrate the importance of applying regularization techniques such as adding noise to the synthetic data for training and show a possibility of estimating uncertainties in the inversion results by training multiple networks.  相似文献   
5.
Statistical studies of extremes are of interest in the climatic sciences, in particular trends of periods of unusually warm or cold weather, which could be labelled warm and cold spells, respectively. We study the yearly number of spells in Uppsala, Sweden which from a data‐analytic point of view truly are counts, and employ theory and methods from the field of regression models for counts. A possible trend for the period 1840–2012 was investigated. The trend for warm spells is positive and demonstrated to be larger in magnitude compared with the one for cold spells, and is found to be statistically significant. The methodology could be extended to analyse other climate indicators.  相似文献   
6.
The Helioseismic and Magnetic Imager (HMI) began near-continuous full-disk solar measurements on 1 May 2010 from the Solar Dynamics Observatory (SDO). An automated processing pipeline keeps pace with observations to produce observable quantities, including the photospheric vector magnetic field, from sequences of filtergrams. The basic vector-field frame list cadence is 135 seconds, but to reduce noise the filtergrams are combined to derive data products every 720 seconds. The primary 720 s observables were released in mid-2010, including Stokes polarization parameters measured at six wavelengths, as well as intensity, Doppler velocity, and the line-of-sight magnetic field. More advanced products, including the full vector magnetic field, are now available. Automatically identified HMI Active Region Patches (HARPs) track the location and shape of magnetic regions throughout their lifetime. The vector field is computed using the Very Fast Inversion of the Stokes Vector (VFISV) code optimized for the HMI pipeline; the remaining 180° azimuth ambiguity is resolved with the Minimum Energy (ME0) code. The Milne–Eddington inversion is performed on all full-disk HMI observations. The disambiguation, until recently run only on HARP regions, is now implemented for the full disk. Vector and scalar quantities in the patches are used to derive active region indices potentially useful for forecasting; the data maps and indices are collected in the SHARP data series, hmi.sharp_720s. Definitive SHARP processing is completed only after the region rotates off the visible disk; quick-look products are produced in near real time. Patches are provided in both CCD and heliographic coordinates. HMI provides continuous coverage of the vector field, but has modest spatial, spectral, and temporal resolution. Coupled with limitations of the analysis and interpretation techniques, effects of the orbital velocity, and instrument performance, the resulting measurements have a certain dynamic range and sensitivity and are subject to systematic errors and uncertainties that are characterized in this report.  相似文献   
7.
The Arctic is more vulnerable to climate change than are mid latitudes. Therefore, palaeolimnological studies from the High Arctic are important in providing insights into the dynamics of the climate system. Here we present a multi‐proxy study from one of the world's northernmost lakes: Bliss Lake, Peary Land, Greenland. The early Holocene (10 850–10 480 cal. a BP) is characterized by increased erosion and gradually more marine conditions. Full marine conditions developed from 10 480 cal. a BP until the lake was isolated at 7220 cal. a BP. From its marine isolation at 7220 cal. a BP Bliss Lake becomes a lacustrine environment. Evidence from geochemical proxies (δ13C and total organic carbon) suggests that warmer conditions prevailed between 7220 and 6500 cal. a BP, corresponding to the Holocene thermal maximum, and from 3300 until 910 cal. a BP. From 850 to 500 cal. a BP colder climate conditions persisted. The transition from warmer to colder climate conditions taking place around 850 cal. a BP may be associated with the transition from the Medieval Warm Period to the Little Ice Age. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
8.
Hydraulic roughness over simple subaqueous dunes   总被引:2,自引:1,他引:1  
Detailed studies of flow over subaqueous dunes in laboratory flumes were used to suggest a virtual near-bed layer of twice the dune height in which the mean velocity is accelerated towards the crest by contraction. The mean flow velocity in this layer above the crest, transformed into friction velocity by means of the surface skin roughness, is shown to give values consistent with measured values. The resulting dimensionless shear stress due to skin friction is depth-independent, in contrast to that derived by means of often cited traditional methods. As a result of the relationship between dune height and the thickness of the near-bed layer, an expression for the expansion loss behind dunes was formulated and used to relate form resistance directly to dune height.  相似文献   
9.
10.
Vietnam is in the process of introducing adaptive management based on indicators and time-series to manage its marine fisheries. The development of indicator-based frameworks for fisheries management has accelerated in recent years. This article describes the suite of indicators being suggested or used in Vietnam including the data-collection system. The Vietnamese approach is supported by an institutional structure consisting of a multi-disciplinary advisory system to facilitate the process of using indicators and to introduce knowledge-based management. The article concludes by identifying current problems and weaknesses and by providing suggestions for future improvement of the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号