首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   7篇
测绘学   3篇
大气科学   2篇
地球物理   21篇
地质学   37篇
海洋学   2篇
天文学   35篇
综合类   1篇
自然地理   3篇
  2023年   3篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   5篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   8篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
1.
CM chondrites are complex impact (mostly regolith) breccias, in which lithic clasts show various degrees of aqueous alteration. Here, we investigated the degree of alteration of individual clasts within 19 different CM chondrites and CM‐like clasts in three achondrites by chemical analysis of the tochilinite‐cronstedtite‐intergrowths (TCIs; formerly named “poorly characterized phases”). To identify TCIs in various chondritic lithologies, we used backscattered electron (BSE) overview images of polished thin sections, after which appropriate samples underwent electron microprobe measurements. Thus, 75 lithic clasts were classified. In general, the excellent work and specific criteria of Rubin et al. (2007) were used and considered to classify CM breccias in a similar way as ordinary chondrite breccias (e.g., CM2.2‐2.7). In BSE images, TCIs in strongly altered fragments in CM chondrites (CM2.0‐CM2.2) appear dark grayish and show a low contrast to the surrounding material (typically clastic matrix), and can be distinguished from TCIs in moderately (CM2.4‐CM2.6) or less altered fragments (CM2.7‐CM2.9); the latter are bright and have high contrast to the surroundings. We found that an accurate subclassification can be obtained by considering only the “FeO”/SiO2 ratio of the TCI chemistry. One could also consider the TCIs’ S/SiO2 ratio and the metal abundance, but these were not used for classification due to several disadvantages. Most of the CM chondrites are finds that have suffered terrestrial weathering in hot and cold deserts. Thus, the observed abundance of metal is susceptible to weathering and may not be a reliable indicator of subtype classification. This study proposes an extended classification scheme based on Rubin’s scale from subtypes CM2.0‐CM2.9 that takes the brecciation into account and includes the minimum to maximum degree of alteration of individual clasts. The range of aqueous alteration in CM chondrites and small spatial scale of mixing of clasts with different alteration histories will be important for interpreting returned samples from the OSIRIS‐REx and Hayabusa 2 missions in the future.  相似文献   
2.
The brecciation and shock classification of 2280 ordinary chondrites of the meteorite thin section collection at the Institut für Planetologie (Münster) has been determined. The shock degree of S3 is the most abundant shock stage for the H and LL chondrites (44% and 41%, respectively), while the L chondrites are on average more heavily shocked having more than 40% of rocks of shock stage S4. Among the H and LL chondrites, 40–50% are “unshocked” or “very weakly shocked.” Considering the petrologic types, in general, the shock degree is increasing with petrologic type. This is the case for all meteorite groups. The main criteria to define a rock as an S6 chondrite are the solid‐state recrystallization and staining of olivine and the melting of plagioclase often accompanied by the formation of high‐pressure phases like ringwoodite. These characteristics are typically restricted to local regions of a bulk chondrite in or near melt zones. In the past, the identification of high‐pressure minerals (e.g., ringwoodite) was often taken as an automatic and practical criterion for a S6 classification during chondrite bulk rock studies. The shock stage classification of many significantly shocked chondrites (>S3) revealed that most ringwoodite‐bearing rocks still contain more than 25% plagioclase (74%). Thus, these bulk chondrites do not even fulfill the S5 criterion (e.g., 75% of plagioclase has to be transformed into maskelynite) and have to be classified as S4. Studying chondrites on typically large thin sections (several cm2) and/or using samples from different areas of the meteorites, bulk chondrites of shock stage S6 should be extremely rare. In this respect, the paper will discuss the probability of the existence of bulk rocks of S6.  相似文献   
3.
This work is part of a project to build an infrared database in order to link IR data of planetary materials (and therefore possible Mercury material) with remote sensing observations of Mercury, which will probably be obtained by the MERTIS instrument on the forthcoming BepiColombo mission. The unique achondrite Northwest Africa (NWA) 7325, which has previously been suggested to represent the first sample from Mercury, was investigated by optical and electron microscopy, and infrared and Raman spectroscopy. In addition, the oxygen, strontium, xenon, and argon isotopes were measured and the abundance of selected trace elements determined. The meteorite is a cumulate rock with subchondritic abundances of HFSE and REE and elevated Sr contents, which underwent a second heating and partial remelting process. Oxygen isotope measurements show that NWA 7325 plots in the ureilite field, close to the ALM‐A trachyandesitic fragment found in the unique Almahata Sitta meteorite breccia. On the other hand, mineralogical investigations of the pyroxenes in NWA 7325 provide evidence for similarities to the lodranites and acapulcoites. Furthermore, the rock is weakly shocked and argon isotope data record ancient (~4.5 Ga) plateau ages that have not been reset. The sample records a cosmogenic exposure age of ~19 Ma. Systematics of Rb‐Sr indicate an extreme early volatile depletion of the precursor material, similar to many other achondrite groups. However, despite its compositional similarities to other meteorite groups, our results suggest that this meteorite is unique and unrelated to any other known achondrite group. An origin for NWA 7325 as a sample from the planet Mercury is not supported by the results of our investigation. In particular, the evidence from infrared spectroscopy indicates that a direct relationship between NWA 7325 and the planet Mercury can be ruled out: no acceptable spectral match between laboratory analyses and remote sensing observations from Mercury has been obtained. However, we demonstrate that infrared spectroscopy is a rapid and nondestructive method to characterize mineral phases and thus an excellent tool for planetary surface characterization in space missions.  相似文献   
4.
Since 1994, the Rumuruti (R) chondrites have been recognized as a new, well-established chondrite group differing from carbonaceous, ordinary, and enstatite chondrites. The first R chondrite, Carlisle Lakes, was found in Australia in 1977. Meanwhile, the number has increased to 107 (December, 2010). This group is named after the Rumuruti meteorite, the first and so far the only R chondrite fall. Most of the R chondrites are breccias containing a variety of different clasts embedded in a clastic matrix. Some textural and mineralogical characteristics can be summarized as follows: (a) the chondrule abundance in large fragments and in unbrecciated rocks is ∼35–50 vol%; (b) Ca,Al-rich inclusions are rare; (c) the olivine abundance is typically 65–78 vol%; (d) the mean chondrule diameter is ∼400 μm; (e) in unequilibrated R chondrites, low-Ca pyroxene is dominating, whereas in equilibrated R chondrites it is Ca-rich pyroxene; (f) the typical olivine in a metamorphosed lithology is ∼Fa38–40; (g) matrix olivine in unequilibrated, type 3 fragments and rocks has much higher Fa (∼45–60 mol%) compared to matrix olivines in type 4–6 lithologies (∼Fa38–41); (h) spinels have a high TiO2 of ∼5 wt%; (i) abundant different noble metal-bearing phases (metals, sulfides, tellurides, arsenides) occur. The exception is the metamorphosed, type 5/6 R chondrite La Paz Icefield 04840 which contains hornblende, phlogopite, and Ca-poor pyroxene, the latter phase typically occurring in low-grade metamorphosed R chondrites only.In bulk composition, R chondrites have some affinity to ordinary chondrites: (a) the absence of significant depletions in Mn and Na in R chondrites and ordinary chondrites is an important feature to distinguish these groups from carbonaceous chondrites; (b) total Fe (∼24 wt%) of R chondrites is between those of H and L chondrites (27.1 and 21.6 wt%, respectively); (c) the average CI/Mg-normalized lithophile element abundances are ∼0.95 × CI, which is lower than those for carbonaceous chondrites (≥1.0 × CI) and slightly higher than those for ordinary chondrites (∼0.9 × CI); (d) trace element concentrations such as Zn (∼150 ppm) and Se (∼15 ppm) are much higher than in ordinary chondrites; (e) the whole rock Δ17O of ∼2.7 for R chondrites is the highest among all meteorite groups, and the mean oxygen isotope composition is δ17O = 5.36 ± 0.43, δ18O = 5.07 ± 0.86, Δ17O = +2.72 ± 0.31; (f) noble gas cosmic ray exposure ages of R chondrites range between ∼0.1 and 70 Ma. More than half of the R chondrites analyzed for noble gases contain implanted solar wind and, thus, are regolith breccias. The 43 R chondrites from Northern Africa analyzed so far for noble gases seem to represent at least 16 falls. Although the data base is still scarce, the data hint at a major collision event on the R chondrite parent body between 15 and 25 Ma ago.  相似文献   
5.
Based on the high abundance of fine‐grained material and its dark appearance, NWA 11024 was recognized as a CM chondrite, which is also confirmed by oxygen isotope measurements. But contrary to known CM chondrites, the typical phases indicating aqueous alteration (e.g., phyllosilicates, carbonates) are missing. Using multiple analytical techniques, this study reveals the differences and similarities to known CM chondrites and will discuss the possibility that NWA 11024 is the first type 3 CM chondrite. During the investigation, two texturally apparent tochilinite–cronstedtite intergrowths were identified within two thin sections. However, the former phyllosilicates were recrystallized to Fe‐rich olivine during a heating event without changing the textural appearance. A peak temperature of 400–600 °C is estimated, which is not high enough to destroy or recrystallize calcite grains. Thus, calcites were never constituents of the mineral paragenesis. Another remarkable feature of NWA 11024 is the occurrence of unknown clot‐like inclusions (UCLIs) within fine‐grained rims, which are unique in this clarity. Their density and S concentration are significantly higher than of the surrounding fine‐grained rim and UCLIs can be seen as primary objects that were not formed by secondary alteration processes inside the rims. Similarities to chondritic and cometary interplanetary dust particles suggest an ice‐rich first‐generation planetesimal for their origin. In the earliest evolution, NWA 11024 experienced the lowest degree of aqueous alteration of all known CM chondrites and subsequently, a heating event dehydrated the sample. We suggest to classify the meteorite NWA 11024 as the first type 3 CM chondrite similar to the classification of CV3 chondrites (like Allende) that could also have lost their matrix phyllosilicates by thermal dehydration.  相似文献   
6.
Storm runoff from the Marikina River Basin frequently causes flood events in the Philippine capital region Metro Manila. This paper presents and evaluates a system to predict short-term runoff from the upper part of that basin (380 km2). It was designed as a possible component of an operational warning system yet to be installed. For the purpose of forecast verification, hindcasts of streamflow were generated for a period of 15 months with a time-continuous, conceptual hydrological model. The latter was fed with real-time observations of rainfall. Both ground observations and weather radar data were tested as rainfall forcings. The radar-based precipitation estimates clearly outperformed the raingauge-based estimates in the hydrological verification. Nevertheless, the quality of the deterministic short-term runoff forecasts was found to be limited. For the radar-based predictions, the reduction of variance for lead times of 1, 2 and 3 hours was 0.61, 0.62 and 0.54, respectively, with reference to a “no-forecast” scenario, i.e. persistence. The probability of detection for major increases in streamflow was typically less than 0.5. Given the significance of flood events in the Marikina Basin, more effort needs to be put into the reduction of forecast errors and the quantification of remaining uncertainties.  相似文献   
7.
We develop and test a real-time envelope cross-correlation detector for use in seismic response plans to mitigate hazard of induced seismicity. The incoming seismological data are cross-correlated in real-time with a set of previously recorded master events. For robustness against small changes in the earthquake source locations or in the focal mechanisms we cross-correlate the envelopes of the seismograms rather than the seismograms themselves. Two sequenced detection conditions are implemented: After passing a single trace cross-correlation condition, a network cross-correlation is calculated taking amplitude ratios between stations into account. Besides detecting the earthquake and assigning it to the respective reservoir, real-time magnitudes are important for seismic response plans. We estimate the magnitudes of induced microseismicity using the relative amplitudes between master event and detected event. The real-time detector is implemented as a SeisComP3 module. We carry out offline and online performance tests using seismic monitoring data of the Insheim and Landau geothermal power plants (Upper Rhine Graben, Germany), also including blasts from a nearby quarry. The comparison of the automatic real-time catalogue with a manually processed catalogue shows, that with the implemented parameters events are always correctly assigned to the respective reservoir (4 km distance between reservoirs) or the quarry (8 km and 10 km distance, respectively, from the reservoirs). The real-time catalogue achieves a magnitude of completeness around 0.0. Four per cent of the events assigned to the Insheim reservoir and zero per cent of the Landau events are misdetections. All wrong detections are local tectonic events, whereas none are caused by seismic noise.  相似文献   
8.
In Allende, a very complex compound chondrule (Allende compound chondrule; ACC) was found consisting of at least 16 subchondrules (14 siblings and 2 independents). Its overall texture can roughly be described as a barred olivine object (BO). The BO texture is similar in all siblings, but does not exist in the two independents, which appear as relatively compact olivine‐rich units. Because of secondary alteration of pristine Allende components and the ACC in particular, only limited predictions can be made concerning the original compositions of the colliding melt droplets. Based on textural and mineralogical characteristics, the siblings must have been formed on a very short time scale in a dense, local environment. This is also supported by oxygen isotope systematics showing similar compositions for all 16 subchondrules. Furthermore, the ACC subchondrules are isotopically distinct from typical Allende chondrules, indicating formation in or reaction with a more 16O‐poor reservoir. We modeled constraints on the particle density required at the ACC formation location, using textural, mineral‐chemical, and isotopic observations on this multicompound chondrule to define melt droplet collision conditions. In this context, we discuss the possible relationship between the formation of complex chondrules and the formation of macrochondrules and cluster chondrites. While macrochondrules may have formed under similar or related conditions as complex chondrules, cluster chondrites certainly require different formation conditions. Cluster chondrites represent a mixture of viscously deformed, seemingly young chondrules of different chemical and textural types and a population of older chondrules. Concerning the formation of ACC calculations suggest the existence of very local, kilometer‐sized, and super‐dense chondrule‐forming regions with extremely high solid‐to‐gas mass ratios of 1000 or more.  相似文献   
9.
The Almahata Sitta strewn field is dominated by ureilites, but contains a large fraction of chondritic fragments of various types. We analyzed stable isotopes of He, Ne, Ar, Kr, and Xe, and the cosmogenic radionuclides 10Be, 26Al, and 36Cl in six chondritic Almahata Sitta fragments (EL6 breccia, EL6, EL3‐5, CB, LL4/5, R‐like). The cosmic‐ray exposure (CRE) ages of five of the six samples have an average of 19.2 ± 3.3 Ma, close to the average of 19.5 ± 2.5 Ma for four ureilites. The cosmogenic radionuclide concentrations in the chondrites indicate a preatmospheric size consistent with Almahata Sitta. This corroborates that Almahata Sitta chondrite samples were part of the same asteroid as the ureilites. However, MS‐179 has a lower CRE age of 11.0 ± 1.4 Ma. Further analysis of short‐lived radionuclides in fragment MS‐179 showed that it fell around the same time, and from an object of similar size as Almahata Sitta, making it almost certain that MS‐179 is an Almahata Sitta fragment. Instead, its low CRE age could be due to gas loss, chemical heterogeneity that may have led to an erroneous 21Ne production‐rate, or, perhaps most likely, MS‐179 could represent the true 4π exposure age of Almahata Sitta (or an upper limit thereof), while all other samples analyzed so far experienced exposure on the parent body of similar lengths. Finally, MS‐179 had an extraordinarily high activity of neutron‐capture 36Cl, ~600 dpm kg?1, the highest activity observed in any meteorite to date, related to a high abundance of the Cl‐bearing mineral lawrencite.  相似文献   
10.
In autumn 2002 a time-series station was installed in the tidal inlet between the Islands of Langeoog and Spiekeroog (Southern North Sea, NW Germany) to continuously measure physical, chemical, and meteorological parameters, even during extreme weather conditions (gale-force storms, drifting ice). Inside the pole of the station sensor tubes are installed in direction of the prevailing tidal currents. The tubes are equipped with hydrographic sensors (pressure, temperature, conductivity) and allow retrieval of water for nutrient analysis by automated instruments located inside the pole. Dissolved methane and the nutrients ammonia, nitrite, nitrate, phosphate, and silicate are measured at the station.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号