首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Xing Fang  John W. Pomeroy 《水文研究》2016,30(16):2754-2772
A devastating flood struck Southern Alberta in late June 2013, with much of its streamflow generation in the Front Ranges of the Rocky Mountains, west of Calgary. To better understand streamflow generation processes and their sensitivity to initial conditions, a physically based hydrological model was developed using the Cold Regions Hydrological Modelling platform (CRHM) to simulate the flood for the Marmot Creek Research Basin (~9.4 km2). The modular model includes major cold and warm season hydrological processes including snow redistribution, sublimation, melt, runoff over frozen and unfrozen soils, evapotranspiration, subsurface runoff on hillslopes, groundwater recharge and discharge and streamflow routing. Uncalibrated simulations were conducted for eight hydrological years and generally matched streamflow observations well, with a NRMSD of 52%, small model bias (?3%) and a Nash–Sutcliffe efficiency (NSE) of 0.71. The model was then used to diagnose the responses of hydrological processes in 2013 flood from different ecozones in Marmot Creek: alpine, treeline, montane forest and large and small forest clearings to better understand spatial variations in the flood runoff generation mechanisms. To examine the sensitivity to antecedent conditions, ‘virtual’ flood simulations were conducted using a week (17 to 24 June 2013) of flood meteorology imposed on the meteorology of the same period in other years (2005 to 2012), or switched with the meteorology of one week in different months (May to July) of 2013. Sensitivity to changing precipitation and land cover was assessed by varying the precipitation amount during the flood and forest cover and soil storage capacity in forest ecozone. The results show that runoff efficiency increases rapidly with antecedent snowpack and soil moisture storage with the highest runoff response to rainfall from locations in the basin where there are recently melted or actively melting snowpacks and resulting high soil moisture or frozen soils. The impact of forest canopy on flooding is negligible, but flood peak doubles if forest canopy removal is accompanied by 50% reduction in water storage capacity in the basin. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
司伟  包为民  瞿思敏  石朋 《湖泊科学》2018,30(2):533-541
空间集总式水文模型的洪水预报精度会受到面平均雨量估计误差的严重影响.点雨量监测值的误差类型、误差大小以及流域的雨量站点密度和站点的空间分布都会影响到面平均雨量的计算.为提高实时洪水预报精度,本文提出了一种基于降雨系统响应曲线洪水预报误差修正方法.通过此方法估计降雨输入项的误差,从而提高洪水预报精度.此方法将水文模型做为输入和输出之间的响应系统,用实测流量和计算流量之间的差值做为信息,通过降雨系统响应曲线,使用最小二乘估计原理,对面平均雨量进行修正,再用修正后的面平均雨量重新计算出流过程.将此修正方法结合新安江模型使用理想案例进行检验,并应用于王家坝流域的16场历史洪水以及此流域不同雨量站密度的情况下,结果证明均有明显修正效果,且在雨量站密度较低时修正效果更加明显.该方法是一种结构简单且不增加模型参数和复杂度的实时洪水修正的新方法.  相似文献   

3.
Despite the significant role of precipitation in the hydrological cycle, few studies have been conducted to evaluate the impacts of the temporal resolution of rainfall inputs on the performance of SWAT (soil and water assessment tool) models in large-sized river basins. In this study, both daily and hourly rainfall observations at 28 rainfall stations were used as inputs to SWAT for daily streamflow simulation in the Upper Huai River Basin. Study results have demonstrated that the SWAT model with hourly rainfall inputs performed better than the model with daily rainfall inputs in daily streamflow simulation, primarily due to its better capability of simulating peak flows during the flood season. The sub-daily SWAT model estimated that 58 % of streamflow was contributed by baseflow compared to 34 % estimated by the daily model. Using the future daily and 3-h precipitation projections under the RCP (Representative Concentration Pathways) 4.5 scenario as inputs, the sub-daily SWAT model predicted a larger amount of monthly maximum daily flow during the wet years than the daily model. The differences between the daily and sub-daily SWAT model simulation results indicated that temporal rainfall resolution could have much impact on the simulation of hydrological process, streamflow, and consequently pollutant transport by SWAT models. There is an imperative need for more studies to examine the effects of temporal rainfall resolution on the simulation of hydrological and water pollutant transport processes by SWAT in river basins of different environmental conditions.  相似文献   

4.
Distributed hydrological modelling using space–time estimates of rainfall from weather radar provides a natural approach to area-wide flood forecasting and warning at any location, whether gauged or ungauged. However, radar estimates of rainfall may lack consistent, quantitative accuracy. Also, the formulation of hydrological models in distributed form may be problematic due to process complexity and scaling issues. Here, the aim is to first explore ways of improving radar rainfall accuracy through combination with raingauge network data via integrated multiquadric methods. When the resulting gridded rainfall estimates are employed as input to hydrological models, the simulated river flows show marked improvements when compared to using radar data alone. Secondly, simple forms of physical–conceptual distributed hydrological model are considered, capable of exploiting spatial datasets on topography and, where necessary, land-cover, soil and geology properties. The simplest Grid-to-Grid model uses only digital terrain data to delineate flow pathways and to control runoff production, the latter by invoking a probability-distributed relation linking terrain slope to soil absorption capacity. Model performance is assessed over nested river basins in northwest England, employing a lumped model as a reference. When the distributed model is used with the gridded radar-based rainfall estimators, it shows particular benefits for forecasting at ungauged locations.  相似文献   

5.
ABSTRACT

Multisource rainfall products can be used to overcome the absence of gauged precipitation data for hydrological applications. This study aims to evaluate rainfall estimates from the Chinese S-band weather radar (CINRAD-SA), operational raingauges, multiple satellites (CMORPH, ERA-Interim, GPM, TRMM-3B42RT) and the merged satellite–gauge rainfall products, CMORPH-GC, as inputs to a calibrated probability distribution model (PDM) on the Qinhuai River Basin in Nanjing, China. The Qinhuai is a middle-sized catchment with an area of 799 km2. All sources used in this study are capable of recording rainfall at high spatial and temporal resolution (3 h). The discrepancies between satellite and radar data are analysed by statistical comparison with raingauge data. The streamflow simulation results from three flood events suggest that rainfall estimates using CMORPH-GC, TRMM-3B42RT and S-band radar are more accurate than those using the other rainfall sources. These findings indicate the potential to use satellite and radar data as alternatives to raingauge data in hydrological applications for ungauged or poorly gauged basins.  相似文献   

6.
《水文科学杂志》2013,58(4):613-625
Abstract

Estimates of rainfall elasticity of streamflow in 219 catchments across Australia are presented. The rainfall elasticity of streamflow is defined here as the proportional change in mean annual streamflow divided by the proportional change in mean annual rainfall. The elasticity is therefore a simple estimate of the sensitivity of long-term streamflow to changes in long-term rainfall, and is particularly useful as an initial estimate of climate change impact in land and water resources projects. The rainfall elasticity of streamflow is estimated here using a hydrological modelling approach and a nonparametric estimator. The results indicate that the rainfall elasticity of streamflow (? P ) in Australia is about 2.0–3.5 (observed in about 70% of the catchments), that is, a 1% change in mean annual rainfall results in a 2.0–3.5% change in mean annual streamflow. The rainfall elasticity of streamflow is strongly correlated to runoff coefficient and mean annual rainfall and streamflow, where streamflow is more sensitive to rainfall in drier catchments, and those with low runoff coefficients. There is a clear relation-ship between the ? P values estimated using the hydrological modelling approach and those estimated using the nonparametric estimator for the 219 catchments, although the values estimated by the hydrological modelling approach are, on average, slightly higher. The modelling approach is useful where a detailed study is required and where there are sufficient data to reliably develop and calibrate a hydrological model. The nonparametric estimator is useful where consistent estimates of the sensitivity of long-term streamflow to climate are required, because it is simple to use and estimates the elasticity directly from the historical data. The nonparametric method, being model independent, can also be easily applied in comparative studies to data sets from many catchments across large regions.  相似文献   

7.
Soil moisture is a key hydrological variable in flood forecasting: it largely influences the partition of rain between runoff and infiltration and thus controls the flow at the outlet of a catchment. The methodology developed in this paper aims at improving the commonly used hydrological tools in an operational forecasting context by introducing soil moisture data into streamflow modelling. A sequential assimilation procedure, based on an extended Kalman filter, is developed and coupled with a lumped conceptual rainfall–runoff model. It updates the internal states of the model (soil and routing reservoirs) by assimilating daily soil moisture and streamflow data in order to better fit these external observations. We present in this paper the results obtained on the Serein, a Seine sub-catchment (France), during a period of about 2 years and using Time Domain Reflectivity probe soil moisture measurements from 0–10 to 0–100 cm and stream gauged data. Streamflow prediction is improved by assimilation of both soil moisture and streamflow individually and by coupled assimilation. Assimilation of soil moisture data is particularly effective during flood events while assimilation of streamflow data is more effective for low flows. Combined assimilation is therefore more adequate on the entire forecasting period. Finally, we discuss the adequacy of this methodology coupled with Remote Sensing data.  相似文献   

8.
太湖流域水文数学模型   总被引:10,自引:4,他引:10  
本文针对太湖流域研制了全流域水文数学模型,该模型包括河流、湖泊模拟、边界条件模拟、降雨径流模拟、工程情况及控制运行方式模拟以及骨干河网中水流运动模拟五个方面。模型经1984、1985两年资料进行了上述五个方面的全面率定和检验,模拟结果与实测基本吻合。本模型全面通用,因此可以用来研究太湖流域洪水、枯水及调度等诸方面课题,本文简要地介绍应用该模型研究围垦的影响、规划工程的防洪效果及设计典型年选择三方面问题。  相似文献   

9.
Weather radar been widely employed to measure precipitation and to predict flood risks. However, it is still not considered accurate enough because of radar errors. Most previous studies have focused primarily on removing errors from the radar data. Therefore, in the current study, we examined the effects of radar rainfall errors on rainfall-runoff simulation using the spatial error model (SEM). SEM was used to synthetically generate random or cross-correlated errors. A number of events were generated to investigate the effect of spatially dependent errors in radar rainfall estimates on runoff simulation. For runoff simulation, the Nam River basin in South Korea was used with the distributed rainfall-runoff model, Vflo?. The results indicated that spatially dependent errors caused much higher variations in peak discharge than independent random errors. To further investigate the effect of the magnitude of cross-correlation among radar errors, different magnitudes of spatial cross-correlations were employed during the rainfall-runoff simulation. The results demonstrated that a stronger correlation led to a higher variation in peak discharge up to the observed correlation structure while a correlation stronger than the observed case resulted in lower variability in peak discharge. We concluded that the error structure in radar rainfall estimates significantly affects predictions of the runoff peak. Therefore, efforts to not only remove the radar rainfall errors, but to also weaken the cross-correlation structure of the errors need to be taken to forecast flood events accurately.  相似文献   

10.
《水文科学杂志》2013,58(5):909-917
Abstract

The possibility of simulating flooding in the Huong River basin, Vietnam, was examined using quantitative precipitation forecasts at regional and global scales. Raingauge and satellite products were used for observed rainfall. To make maximum use of the spatial heterogeneity of the different types of rainfall data, a distributed hydrological model was set up to represent the hydrological processes. In this way, streamflow simulated using the rainfall data was compared with that observed in situ. The forecast on a global scale showed better performance during normal flow peak simulations than during extreme events. In contrast, it was found that during an extreme flood peak, the use of regional forecasts and satellite data gives results that are in close agreement with results using raingauge data. Using the simulated overflow volumes recorded at the control point downstream, inundation areas were then estimated using topographic characteristics. This study is the first step in developing a future efficient early warning system and evacuation strategy.  相似文献   

11.
Rainfall runoff (RR) models are fundamental tools for reducing flood hazards. Although several studies have highlighted the potential of soil moisture (SM) observations to improve flood modelling, much research has still to be done for fully exploiting the evident connection between SM and runoff. As a way of example, improving the quality of forcing data, i.e. rainfall observations, may have a great benefit in flood simulation. Such data are the main hydrological forcing of classical RR models but may suffer from poor quality and record interruption issues. This study explores the potential of using SM observations to improve rainfall observations and set a reliable initial wetness condition of the catchment for improving the capability in flood modelling. In particular, a RR model, which incorporates SM for its initialization, and an algorithm for rainfall estimation from SM observations are coupled using a simple integration method. The study carried out at the Valescure experimental catchment (France) demonstrates the high information content retained by SM for RR transformation, thus giving new possibilities for improving hydrological applications. Results show that an appropriate configuration of the two models allows obtaining improvement in flood simulation up to 15% in mean and 34% in median Nash Sutcliffe performances as well as a reduction of the median error in volume and on peak discharge of about 30% and 15%, respectively.  相似文献   

12.
Hydrological processes in karst basins are controlled by permeable multimedia, consisting of soil pores, epikarst fractures, and underground conduits. Distributed modelling of hydrological dynamics in such heterogeneous hydrogeological conditions is a challenging task. Basing on the multilayer structure of the distributed hydrology‐soil‐vegetation model (DHSVM), a distributed hydrological model for a karst basin was developed by integrating mathematical routings of porous Darcy flow, fissure flow and underground channel flow. Specifically, infiltration and saturated flow movement within epikarst fractures are expressed by the ‘cubic law’ equation which is associated with fractural width, direction, and spacing. A small karst basin located in Guizhou province of southwest China was selected for this hydrological simulation. The model parameters were determined on the basis of field measurement and calibrated against the observed soil moisture contents, vegetation interception, surface runoff, and underground flow discharges from the basin outlet. The results show that due to high permeability of the epikarst zone, a significant amount of surface runoff is only generated after heavy rainfall events during the wet season. Rock exposure and the epikarst zone significantly increase flood discharge and decrease evapotranspiration (ET) loss; the peak flood discharge is directly proportional to the size of the aperture. Distribution of soil moisture content (SMC) primarily depends on topographic variations just after a heavy rainfall, while SMC and actual ET are dominated by land cover after a period of consecutive non‐rainfall days. The new model was able to capture the sharp increase and decrease of the underground streamflow hydrograph, and as such can be used to investigate hydrological effects in such rock features and land covers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Influence of rainfall spatial variability on flood prediction   总被引:9,自引:0,他引:9  
This paper deals with the sensitivity of distributed hydrological models to different patterns that account for the spatial distribution of rainfall: spatially averaged rainfall or rainfall field. The rainfall data come from a dense network of recording rain gauges that cover approximately 2000 km2 around Mexico City. The reference rain sample accounts for the 50 most significant events, whose mean duration is about 10 h and maximal point depth 170 mm. Three models were tested using different runoff production models: storm-runoff coefficient, complete or partial interception. These models were then applied to four fictitious homogeneous basins, whose sizes range from 20 to 1500 km2. For each test, the sensitivity of the model is expressed as the relative differences between the empirical distribution of the peak flows (and runoff volumes), calculated according to the two patterns of rainfall input: uniform or non-uniform. Differences in flows range from 10 to 80%, depending on the type of runoff production model used, the size of the basin and the return period of the event. The differences are generally moderate for extreme events. In the local context, this means that uniform design rainfall combining point rainfall distribution and the probabilistic concept of the areal reduction factor could be sufficient to estimate major flood probability. Differences are more significant for more frequent events. This can generate problems in calibrating the hydrological model when spatial rainfall localization is not taken into account: a bias in the estimation of parameters makes their physical interpretation difficult and leads to overestimation of extreme flows.  相似文献   

14.
Identifying the controlling factors for hydrological responses is of great importance for artificial neural network-based flood forecasting models, which are often hindered by the lack of physical mechanisms. To explore the first-order controlling factors of hydrograph patterns, a hybrid neural network was designed to analyse the impacts of potential driving variables with different temporal and spatial resolutions on hydrograph patterns. The Jinhua River Basin in Southeast China was used as an example in this study. Flood events with different hydrograph patterns and six external factors denoting potential controlling factors were individually classified into specific clusters using self-organizing maps (SOMs). Based on the back-propagation neural network (BPNN) and leave-one-out cross-validation methods, the controlling factors of different flood patterns were identified by comparing the performances of flood simulation models trained with datasets before and after the potential controlling factor classification. The results showed that (i) the classification of controlling factors indicating various runoff regimes significantly improved the performance of data-driven models in flood simulation in terms of correlation coefficient, Nash-Sutcliffe coefficient, and normalized root mean square error; (ii) the spatial distribution of antecedent soil moisture and vegetation conditions as well as the temporal distribution of rainfall dominated different hydrograph patterns; and (iii) the transition of dominant rainfall-runoff processes could be identified in an individual flood event using the hybrid SOM–BPNN model, indicating the varying influence of potential controlling factors on streamflow. Overall, the hybrid neural network models trained with datasets classified by controlling factors provide a general analytical framework to identify the governing dynamics for different flood patterns and improve the accuracy of flood simulations. Additionally, more attention should be devoted to improving the time to peak error of hydrological models, which cannot be settled by data-driven models trained with different data-splitting strategies.  相似文献   

15.
Better parameterization of a hydrological model can lead to improved streamflow prediction. This is particularly important for seasonal streamflow forecasting with the use of hydrological modelling. Considering the possible effects of hydrologic non‐stationarity, this paper examined ten parameterization schemes at 12 catchments located in three different climatic zones in east Australia. These schemes are grouped into four categories according to the period when the data are used for model calibration, i.e. calibration using data: (1) from a fixed period in the historical records; (2) from different lengths of historical records prior to prediction year; (3) from different climatic analogue years in the past; and (4) data from the individual months. Parameterization schemes were evaluated according to model efficiency in both the calibration and verification period. The results show that the calibration skill changes with the different historic periods when data are used at all catchments. Comparison of model performance between the calibration schemes indicates that it is worth calibrating the model with the use of data from each individual month for the purpose of seasonal streamflow forecasting. For the catchments in the winter‐dominant rainfall region of south‐east Australia, a more significant shift in rainfall‐runoff relationships at different periods was found. For those catchments, model calibration with the use of 20 years of data prior to the prediction year leads to a more consistent performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Flash floods represent one of the deadliest and costliest natural disasters worldwide. The hydrological analysis of a flash flood event contributes in the understanding of the runoff creation process. This study presents the analysis of some flash flood events that took place in a complex geomorphological Mediterranean River basin. The objective of the present work is to develop the thresholds for a real‐time flash flood forecasting model in a complex geomorphological watershed, based on high‐frequency data from strategically located hydrological and meteorological telemetric stations. These stations provide hourly real‐time data which were used to determine hydrological and meteorological parameters. The main characteristics of various hydrographs specified in this study were the runoff coefficients, lag time, time to peak, and the maximum potential retention. The estimation of these hydrometeorological parameters provides the necessary information in order to successfully manage flash floods events. Especially, the time to peak is the most significant hydrological parameter that affects the response time of an oncoming flash flood event. A study of the above parameters is essential for the specification of thresholds which are related to the geomorphological characteristics of the river basin, the rainfall accumulation of an event, the rainfall intensity, the threshold runoff through karstic area, the season during which the rainfall takes place and the time intervals between the rainstorms that affect the soil moisture conditions. All these factors are combined into a real‐time‐threshold flash flood prediction model. Historical flash flood events at the downstream are also used for the validation of the model. An application of the proposed model is presented for the Koiliaris River basin in Crete, Greece. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
ABSTRACT

The paper presents the observed effects on the streamflow of changing a tropical forest in the high rainfall belt of Zambia to agricultural use based on traditional farming methods. Hydrological observations were carried out on four small catchments under their natural conditions first, and later two of them under agricultural use with accompanying deforestation. Simple linear regression analysis of both monthly and annual runoff from the treated catchments on the monthly and annual runoff from undisturbed catchments showed that there was an increase in streamflow as a result of deforestation and subsistence agriculture. It is also shown that the shape of the flood hydrograph was changed as a result of changes in land use.  相似文献   

18.
Previous studies have drawn attention to substantial hydrological changes taking place in mountainous watersheds where hydrology is dominated by cryospheric processes. Modelling is an important tool for understanding these changes but is particularly challenging in mountainous terrain owing to scarcity of ground observations and uncertainty of model parameters across space and time. This study utilizes a Markov Chain Monte Carlo data assimilation approach to examine and evaluate the performance of a conceptual, degree‐day snowmelt runoff model applied in the Tamor River basin in the eastern Nepalese Himalaya. The snowmelt runoff model is calibrated using daily streamflow from 2002 to 2006 with fairly high accuracy (average Nash–Sutcliffe metric ~0.84, annual volume bias < 3%). The Markov Chain Monte Carlo approach constrains the parameters to which the model is most sensitive (e.g. lapse rate and recession coefficient) and maximizes model fit and performance. Model simulated streamflow using an interpolated precipitation data set decreases the fractional contribution from rainfall compared with simulations using observed station precipitation. The average snowmelt contribution to total runoff in the Tamor River basin for the 2002–2006 period is estimated to be 29.7 ± 2.9% (which includes 4.2 ± 0.9% from snowfall that promptly melts), whereas 70.3 ± 2.6% is attributed to contributions from rainfall. On average, the elevation zone in the 4000–5500 m range contributes the most to basin runoff, averaging 56.9 ± 3.6% of all snowmelt input and 28.9 ± 1.1% of all rainfall input to runoff. Model simulated streamflow using an interpolated precipitation data set decreases the fractional contribution from rainfall versus snowmelt compared with simulations using observed station precipitation. Model experiments indicate that the hydrograph itself does not constrain estimates of snowmelt versus rainfall contributions to total outflow but that this derives from the degree‐day melting model. Lastly, we demonstrate that the data assimilation approach is useful for quantifying and reducing uncertainty related to model parameters and thus provides uncertainty bounds on snowmelt and rainfall contributions in such mountainous watersheds. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
鄱阳湖流域5大水系来水变化与湖区水文极值事件有密切关系,研究径流变化特征与丰枯遭遇规律对区域防洪抗旱有重要意义.本文运用Copula函数构建了鄱阳湖水系多维径流联合分布模型,采用特枯、偏枯、平水、偏丰和特丰的径流丰枯分类,定量研究了鄱阳湖5大水系丰枯遭遇的问题,探讨了多维丰枯遭遇同步联合概率的变化特征.结果表明:鄱阳湖水系河流之间的径流具有较高的相关性,Gaussian Copula函数能较好地模拟二维至五维的径流联合分布.多条河流的丰枯遭遇随着维数的增加,丰枯组合增加,丰枯同步的联合概率明显下降,且丰枯同步的最大联合概率趋向于丰枯两端.对于相同的概率区间,非汛期径流的丰枯同步联合概率明显大于年径流和汛期径流,而年径流和汛期径流之间的丰枯同步联合概率差别较小.同处于流域北部或南部或相邻的河流之间的组合,其同步联合概率相较其他组合大,而南、北河流组合的同步联合概率相对较小.该研究可为流域水资源管理及水旱灾害预防提供科学依据.  相似文献   

20.
Yanchun Zhou 《水文科学杂志》2015,60(7-8):1340-1360
Abstract

This paper quantifies the impacts of bushfire and climate variability on streamflow from three southeast Australian catchments where bushfires occurred in February 1983. Three hydrological models (AWRA-L, Xinanjiang and GR4J) were first calibrated against streamflow data from the pre-bushfire period and then used to simulate runoff for the post-bushfire period with the calibrated parameters. The difference in simulated streamflow between pre- and post-bushfire periods provides an estimate of the impact of climate variability on streamflow. The impact of bushfire on streamflow is quantified by removing the climate variability impact from the difference in mean annual observed streamflow between post- and pre-bushfire periods. For the first 15 years after the 1983 bushfires, the results from hydrological models for the three catchments indicate that there is a substantial increase in streamflow; this is attributed to initial decreases in evapotranspiration and soil infiltration rates resulting from the fires, followed by logging activity. After 15 years, streamflow dynamics are more heavily influenced by climate effects, although some impact from fire and logging regeneration may still occur. The results show that hydrological models provide reasonably consistent estimates of bushfire and climate impacts on streamflow for the three catchments. The models can be used to quantify relative contributions of forest disturbance (bushfire, logging and other forest management) and climate variability. The results presented can also help forest managers understand the relationship between bushfire and climate variability impacts on water yield in the context of climate variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号