首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   1篇
地质学   3篇
海洋学   2篇
  2021年   1篇
  2011年   2篇
  2006年   2篇
  1997年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
The Kas Formation in SE Turkey was deposited as part of the Permian sequence on the northern margin of the Arabian Plate. Its stratigraphic relationship to time‐equivalent strata of the Arabian Plate was mentioned briefly in previous studies, but has not been elaborated and illustrated in detail. This biostratigraphic review of existing palaeontological data has improved the accuracy of age interpretation for the Kas Formation, and the relationship of its excellent palynological record to the international Permian chronostratigraphic units. As a result, this study has identified a number of key palynological species from the Kas Formation, which occur as well as in the ‘Basal Khuff Clastics’ of Saudi Arabia and in the ‘Khuff transition section’ of Oman. All these units have approximately the same age: Wordian to early Capitanian, based on ‘age control’ provided by Foraminifera. This study also demonstrates that, by using key palynological taxa, correlation of strata would be possible across the entire Arabian Plate in this narrow time range. Hence, the ‘Oman and Saudi Arabia Palynological Zone 6’ (OSPZ6) is applicable throughout the Arabian Plate area, including the northern regions of SE Turkey and Iraq. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
3.
High sedimentation rates (as much as 2500 m/Ma) during Pliocene-Pleistocene, with a resultant undercompacted section as thick as 10,000 m, and lower than normal geothermal gradients are the main characteristics which have created all the means for generation and preservation of oil at deep layers in the Lower Kura Depression.Oils collected from eight different oil fields for analyses seem to have originated from a common source rock which probably is clastic, deposited in relatively subanoxic to suboxic transitional marine environment receiving low to moderate input of terrestrial organic matter.Oils from shallow (< 3000 m) and cold (< 70–80°C) reservoirs have been altered to various extent by bacterial activity.A computer-aided basin modeling study has been carried out to outline the spatial variation of the oil window and thus help in further identification of possible source rocks for the reservoired oil in the Lower Kura Depression. Results suggest that the potential hydrocarbon source horizons of the Miocene and Pliocene Red Bed Series of the so called Productive Succession are, even at depocenter areas, immature with respect to oil generation, and thus, are very unlikely to have been source rocks for the reservoired oils. However, the Oligocene-Lower Miocene Maykop rocks are marginally mature to mature depending on locality and the Eocene and older rocks are mature with respect to oil generation at all representative field locations. Oil generation commenced at the end of Pliocene and continues at present at depths between 6000 and 12,000 m.An unusually deep (> 10,000 m) oil window in the depocenter areas has been caused by the depressed isotherms due to extremely high sedimentation rates (up to 3000 m/Ma) for the last two million years. The main phase of oil generation is taking place at depths greater than what most of the wells in the study are have reached.  相似文献   
4.
Society’s needs for a network of in situ ocean observing systems cross many areas of earth and marine science. Here we review the science themes that benefit from data supplied from ocean observatories. Understanding from existing studies is fragmented to the extent that it lacks the coherent long-term monitoring needed to address questions at the scales essential to understand climate change and improve geo-hazard early warning. Data sets from the deep sea are particularly rare with long-term data available from only a few locations worldwide. These science areas have impacts on societal health and well-being and our awareness of ocean function in a shifting climate.Substantial efforts are underway to realise a network of open-ocean observatories around European Seas that will operate over multiple decades. Some systems are already collecting high-resolution data from surface, water column, seafloor, and sub-seafloor sensors linked to shore by satellite or cable connection in real or near-real time, along with samples and other data collected in a delayed mode. We expect that such observatories will contribute to answering major ocean science questions including: How can monitoring of factors such as seismic activity, pore fluid chemistry and pressure, and gas hydrate stability improve seismic, slope failure, and tsunami warning? What aspects of physical oceanography, biogeochemical cycling, and ecosystems will be most sensitive to climatic and anthropogenic change? What are natural versus anthropogenic changes? Most fundamentally, how are marine processes that occur at differing scales related?The development of ocean observatories provides a substantial opportunity for ocean science to evolve in Europe. Here we also describe some basic attributes of network design. Observatory networks provide the means to coordinate and integrate the collection of standardised data capable of bridging measurement scales across a dispersed area in European Seas adding needed certainty to estimates of future oceanic conditions. Observatory data can be analysed along with other data such as those from satellites, drifting floats, autonomous underwater vehicles, model analysis, and the known distribution and abundances of marine fauna in order to address some of the questions posed above. Standardised methods for information management are also becoming established to ensure better accessibility and traceability of these data sets and ultimately to increase their use for societal benefit. The connection of ocean observatory effort into larger frameworks including the Global Earth Observation System of Systems (GEOSS) and the Global Monitoring of Environment and Security (GMES) is integral to its success. It is in a greater integrated framework that the full potential of the component systems will be realised.  相似文献   
5.

The seismic behaviour of a building on a liquefiable deposit is a complex interaction which involves quantifying both shaking induced damage and permanent ground deformation-related damage. In this paper the key parameters that influence both surface shaking and foundation settlements have been identified as the depth, thickness and liquefaction resistance of an equivalent liquefiable layer. These parameters can be used to develop an ‘equivalent soil profile’ that is analogous to the equivalent single degree-of-freedom that reduces the complexity of the dynamic response of a building into comparable and easily understood quantities. The equivalent soil profile is quantified independent of the seismic hazard, making it compatible with performance based design and assessment frameworks such that the building and soil profile can be directly assessed at different levels of seismic hazard. Several numerical studies are presented that demonstrate the influence of these key parameters on the ground surface shaking and foundation settlement. A set of criteria are proposed for classifying soil profiles into 22 different soil classes for regional loss assessment. An algorithm was developed for automatically fitting the equivalent soil profile to a cone penetration test trace and issues with the fitting are discussed. Field reconnaissance was undertaken to collect additional data to support existing datasets on the performance of buildings in Adapazari, during the 1999 Kocaeli, Turkey, earthquake (Mw = 7.4). The field case history data was used to investigate the correlation between the depth, thickness and liquefaction resistance of an equivalent liquefiable layer, on the extent of foundation permanent deformation. The case history data showed that in general a shallow, thick and weak liquefiable layer near the surface results in significant settlement but a lack of data for buildings on non-liquefiable deposits and the additional complexities involved with real buildings and soil deposits, meant that the trends observed in the idealised numerical models could not identified in the field case history data set.

  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号