首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
大气科学   1篇
地球物理   8篇
地质学   1篇
天文学   1篇
自然地理   2篇
  2021年   1篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2005年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
Impact studies of catchment management in the developing world rarely include detailed hydrological components. Here, changes in the hydrological response of a 200‐ha catchment in north Ethiopia are investigated. The management included various soil and water conservation measures such as the construction of dry masonry stone bunds and check dams, the abandonment of post‐harvest grazing, and the establishment of woody vegetation. Measurements at the catchment outlet indicated a runoff depth of 5 mm or a runoff coefficient (RC) of 1·6% in the rainy season of 2006. Combined with runoff measurements at plot scale, this allowed calculating the runoff curve number (CN) for various land uses and land management techniques. The pre‐implementation runoff depth was then predicted using the CN values and a ponding adjustment factor, representing the abstraction of runoff induced by the 242 check dams in gullies. Using the 2006 rainfall depths, the runoff depth for the 2000 land management situation was predicted to be 26·5 mm (RC = 8%), in line with current RCs of nearby catchments. Monitoring of the ground water level indicated a rise after catchment management. The yearly rise in water table after the onset of the rains (ΔT) relative to the water surplus (WS) over the same period increased between 2002–2003 (ΔT/WS = 3·4) and 2006 (ΔT/WS >11·1). Emerging wells and irrigation are other indicators for improved water supply in the managed catchment. Cropped fields in the gullies indicate that farmers are less frightened for the destructive effects of flash floods. Due to increased soil water content, the crop growing period is prolonged. It can be concluded that this catchment management has resulted in a higher infiltration rate and a reduction of direct runoff volume by 81% which has had a positive influence on the catchment water balance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
2.
Gully erosion is a major cause of soil loss and severe land degradation in sub-humid Ethiopia. The objective of this study was to investigate the role and the effect of subsurface water level change on gully headcut retreat, gully formation and expansion in high rainfall tropical regions in the Ethiopian highlands. During the rainy seasons of 2017–2019, the expansion rate of 16 fixed gullies was measured and subsurface water levels were measured by piezometers installed near gully heads. During the study period, headcut retreats ranged from 0.70 to 2.35 m, with a mean value of 1.49 ± 0.56 m year−1, and average depth of the surface water level varied between 1.12 and 2.82 m, with a mean value of 2.62 m. Gully cross-section areas ranged from 2.90 to 20.90 m2, with an average of 9.31 ± 4.80 m2. Volumetric retreat of gully headcuts ranged from 4.49 to 40.55 m3 and averaged 13.34 ± 9.10 m3. Soil loss from individual gullies ranged from 5.79 to 52.31 t year−1 and averaged 17.21 ± 11.74 t year−1. The headcut retreat rate and sediment yield were closely related over the three study seasons. Elevated subsurface water levels facilitated the slumping of gully banks and heads, causing high sediment yield. When the soil was saturated, bank collapse and headcut retreat were favoured by the combination of elevated subsurface water and high rainfall. This study indicates that area exclosures are effective in controlling subsurface water level, thus reducing gully headcut retreat and associated soil loss.  相似文献   
3.
4.
Soil erosion by water is one of the main environmental concerns in the drought‐prone Eastern Africa region. Understanding factors such as rainfall and erosivity is therefore of utmost importance for soil erosion risk assessment and soil and water conservation planning. In this study, we evaluated the spatial distribution and temporal trends of rainfall and erosivity for the Eastern Africa region during the period 1981–2016. The precipitation concentration index, seasonality index, and modified Fournier index have been analysed using 5 × 5‐km resolution multisource rainfall product (Climate Hazards Group InfraRed Precipitation with Stations). The mean annual rainfall of the region was 810 mm ranging from less than 300 mm in the lowland areas to over 1,200 mm in the highlands being influenced by orography of the Eastern Africa region. The precipitation concentration index and seasonality index revealed a spatial pattern of rainfall seasonality dependent on latitude, with a more pronounced seasonality as we go far from the equator. The modified Fournier index showed high spatial variability with about 55% of the region subject to high to very high rainfall erosivity. The mean annual R‐factor in the study region was calculated at 3,246 ± 1,895 MJ mm ha?1 h?1 yr?1, implying a potentially high water erosion risk in the region. Moreover, both increasing and decreasing trends of annual rainfall and erosivity were observed but spatial variability of these trends was high. This study offers useful information for better soil erosion prediction as well as can support policy development to achieve sustainable regional environmental planning and management of soil and water resources.  相似文献   
5.
The study of variations in total solar irradiance (TSI) and spectral irradiance is important for understanding how the Sun affects the Earth’s climate. A data-driven approach is used in this article to analyze and model the temporal variation of the TSI and Mg?ii index back to 1947. In both cases, observed data in the time interval of the satellite era, 1978?–?2013, were used for neural network (NN) model-design and testing. For this particular purpose, the evolution of the solar magnetic field is assumed to be the main driver for the day-to-day irradiance variability. First, we design a model for the Mg?ii index data from F10.7 cm solar radio-flux using the NN approach in the time span of 1978 through 2013. Results of Mg?ii index model were tested using various numbers of hidden nodes. The predicted values of the hidden layer with five nodes correspond well to the composite Mg?ii values. The model reproduces 94% of the variability in the composite Mg?ii index, including the secular decline between the 1996 and 2008 solar cycle minima. Finally, the extrapolation of the Mg?ii index was performed using the developed model from F10.7 cm back to 1947. Similarly, the NN model was designed for TSI variability study over the time span of the satellite era using data from the Physikalisch-Meteorologisches Observatorium Davos (PMOD) as a target, and solar activity indices as model inputs. This model was able to reproduce the daily irradiance variations with a correlation coefficient of 0.937 from sunspot and facular measurements in the time span of 1978?–?2013. Finally, the temporal variation of the TSI was analyzed using the designed NN model back to 1947 from the Photometric Sunspot Index (PSI) and the extrapolated Mg?ii index. The extrapolated TSI result indicates that the amplitudes of Solar Cycles 19 and 21 are closely comparable to each other, and Solar Cycle 20 appears to be of lower irradiance during its maximum.  相似文献   
6.
Abstract

Different soil and water conservation (SWC) practices have been implemented in many drought-prone parts of Ethiopia since the 1980s. We assessed the effect of SWC practices on runoff response and experimentally derived and tested the validity of the runoff curve number (CN) model parameter for the tropical humid highland climate of the Kasiry watershed in northwestern Ethiopia. We recorded daily rainfall and runoff depth from 18 runoff plots (30 m long × 6 m wide) representing the five main land-use types with various SWC practices and two slope classes (gentle and steep). CN values were derived using the lognormal geometric mean CN procedure. Runoff was significantly less from plots with SWC measures, with average reductions of 44 and 65% observed in cultivated and non-agricultural lands, respectively. Runoff on plots representing non-agricultural land was relatively accurately predicted with the derived CN method, but predictions were less accurate for plots treated with a SWC practice. We conclude that predicting the effect of SWC practices on runoff requires parameterization with separate sets of CN value for each SWC practice.  相似文献   
7.
Abstract

Knowledge of rainfall characteristics is important for estimating soil erosion in arid areas. We determined basic rainfall characteristics (raindrop size distribution, intensity and kinetic energy), evaluated the erosivity of rainfall events, and established a relationship between rainfall intensity I and volume-specific kinetic energy KEvol for the Central Rift Valley area of the Ethiopian highlands. We collected raindrops on dyed filter paper and calculated KEvol and erosivity values for each rainfall event. For most rainfall intensities the median volume drop diameter (D50) was higher than expected, or reported in most studies. Rainfall intensity in the region was not high, with 8% of rain events exceeding 30 mm h-1. We calculated soil erosion from storm energy and maximum 30-min intensity for soils of different erodibility under conditions of fallow (unprotected soil), steep slope (about 9%) and no cover and management practice on the surface, and determined that 3 MJ mm ha-1 h-1 is the threshold erosivity, while erosivity of >7 MJ mm ha-1 h-1 could cause substantial erosion in all soil types in the area.
Editor Z.W. Kundzewicz; Associate Editor Q. Zhang  相似文献   
8.
9.
An overall approach to assess the effectiveness of soil conservation measures at catchment scale is the comparison of sediment budgets before and after implementation of a catchment management programme. In the May Zeg‐zeg catchment (187 ha) in Tigray, north Ethiopia, integrated catchment management has been implemented since 2004: stone bunds were built in the whole catchment, vegetation was allowed to re‐grow on steep slopes and other marginal land, stubble grazing abandoned, and check dams built in gullies. Land use and management were mapped and analysed for 2000 and 2006, whereby particular attention was given to the quantification of changes in soil loss due to the abandonment of stubble grazing. Sediment yield was also measured at the catchment's outlet. A combination of decreased soil loss (from 14·3 t ha–1 y–1 in 2000 to 9·0 t ha–1 y–1 in 2006) and increased sediment deposition (from 5·8 to 7·1 t ha–1 y–1) has led to strongly decreased sediment yield (from 8·5 to 1·9 t ha–1 y–1) and sediment delivery ratio (from 0·6 to 0·21). This diachronic comparison of sediment budgets revealed that integrated catchment management is most effective and efficient and is the advisable and desirable way to combat land degradation in Tigray and other tropical mountains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
10.
Despite its environmental and scientific significance, predicting gully erosion remains problematic. This is especially so in strongly contrasting and degraded regions such as the Horn of Africa. Machine learning algorithms such as random forests (RF) offer great potential to deal with the complex, often non-linear, nature of factors controlling gully erosion. Nonetheless, their applicability at regional to continental scales remains largely untested. Moreover, such algorithms require large amounts of observations for model training and testing. Collecting such data remains an important bottleneck. Here we help to address these gaps by developing and testing a methodology to simulate gully densities across Ethiopia, Eritrea and Djibouti (total area: 1.2 million km2). We propose a methodology to quickly assess the gully head density (GHD) for representative 1 km2 study sites by visually scoring the presence of gullies in Google Earth and then converting these scores to realistic estimates of GHD. Based on this approach, we compiled GHD observations for 1,700 sites. We used these data to train sets of RF regression models that simulate GHD at a 1 km2 resolution, based on topographic/geomorphic, land cover, soil and rainfall conditions. Our approach also accounts for uncertainties in GHD observations. Independent validations showed generally acceptable simulations of regional GHD patterns. We further show that: (i) model performance strongly depends on the amount of training data used, (ii) large prediction errors mainly occur in areas where also the predicted uncertainty is large and (iii) collecting additional training data for these areas results in more drastic model performance improvements. Analyses of the feature importance of predictor variables further showed that patterns of GHD across the Horn of Africa strongly depend on NDVI and annual rainfall, but also on normalized steepness index (ksn) and distance to rivers. Overall, our work opens promising perspectives to assess gully densities at continental scales. © 2020 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号