首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
地球物理   1篇
地质学   5篇
天文学   17篇
  2020年   2篇
  2018年   1篇
  2015年   2篇
  2011年   1篇
  2006年   5篇
  2005年   2篇
  2003年   4篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
1.
Geomagnetism and Aeronomy - We study the electron energy spectra of two powerful solar flares SOL2003-10-28T 1106:16 (GOES class X17.2) and SOL2002-07-23T 0018:16 (X4.8) analyzing the HXR and...  相似文献   
2.
3.
We consider temporal, spectral, and polarization parameters of the hard X-ray and gamma-ray radiation observed during the solar flare of May 20, 2002, in the course of experiments with the SONG and SPR-N instruments onboard the Coronas-F spacecraft. This flare is one of the most intense gamma-ray events among all of the bursts of solar hard electromagnetic radiation detected since the beginning of the Coronas-F operation (since July 31, 2001) and one of the few gamma-ray events observed during solar cycle 23. A simultaneous analysis of the Coronas-F and GOES data on solar thermal X-ray radiation suggests that, apart from heating due to currents of matter in the the flare region, impulsive heating due to the injection of energetic electrons took place during the near-limb flare S21E65 of May 20, 2002. These electrons produced intense hard X-ray and gamma-ray radiation. The spectrum of this radiation extends up to energies ≥7 MeV. Intense gamma-ray lines are virtually unobservable against the background of the nonthermal continuum. The polarization of the hard X-ray (20–100 keV) radiation was estimated to be ≤15–20%. No significant increase in the flux of energetic protons from the flare under consideration was found. At the same time, according to ACE data, the fluxes of energetic electrons in interplanetary space increased shortly (~25 min) after the flare.  相似文献   
4.
5.
6.
The Bragg-type, flat ADP crystal spectrometer, launched on board the INTERCOSMOS 16 satellite has been used for measurements of the X-ray spectra emitted from solar active region plasmas. During the period of the instrument operation (August–September, 1976) only a few active regions were present on the Sun (minimum of the solar activity). About 60 spectra have been registered. In the present paper using a spectrum averaged over 20 scans, we measured the wavelengths corresponding to the statistically significant spectral features seen in this spectrum in the wavelength range 9.14–9.33 Å. By comparison with the calculated line wavelengths and intensities predicted in the framework of the thermal model of the average active region, we performed the identification of these features. Besides rather prominent resonance, intercombination, and forbidden lines of the He-like ion Mg xi, it was possible to identify the satellite lines which correspond to 1s 2 nl - 1s2p nl transitions from the states with n = 2, 3, and 4. The present paper is the first in a series dealing with the INTERCOSMOS 16 Mg xi spectra.  相似文献   
7.
We consider the effects of the absorption of solar XUV radiation by the Earth's atmosphere that were observed in the solar images obtained with the TEREK-K telescope onboard the Coronas-I satellite in May–June 1994 at low solar activity and with the SPIRIT instrumentation onboard the Coronas-F satellite in October–November 2001 at maximum solar activity. The solar images were recorded during the satellite occultation: in the 175- and 304-A spectral ranges onboard Coronas-I with the TEREK-K telescope and in the 175-, 304-, and 8.42-A ranges onboard Coronas-F with the SPIRIT instrumentation. Based on the XUV solar images obtained during atmospheric sounding, apart from the total absorption, we can determine the direction of the atmospheric density gradient and study the local absorption variations with altitude on spatial scales of less than 1 km. The described method can significantly supplement the data obtained in studies of the upper atmosphere by the methods of mass spectrometry, incoherent radar scattering, and the drag of orbital spacecraft.  相似文献   
8.
In part III of the paper containing the analysis of the INTERCOSMOS 16 ADP spectra, it is shown that by assuming the existence of a small admixture (1%) of non-thermal electrons in the active-region plasma it is possible to improve the agreement between measured and calculated fluxes for some spectra. The analysis follows the suggestion contained in the paper by Karev et al. (1980).  相似文献   
9.
We consider the motion of a bubble in a central acceleration field created by gravity or a centrifugal force. In the former case, the bubble moves outwards from and, in the latter, towards the center. We have calculated the characteristic time needed for a bubble to leave or reach the center. The solution obtained provides insight into the processes of thermonuclear supernovae and combustion; in other words, into the interaction between a flame and a turbulent vortex. In the case of combustion, a light bubble of burnt material propagates towards the axis of a strong turbulent vortex faster than it drifts in the direction of rotation of the vortex. It is expected that the development of bubbles should prevent the formation of “pockets” at the flame front, similar to those predicted by a simplified model of turbulent combustion in a constant density flux. In the case of a thermonuclear supernova in a deflagration burning regime, it is shown that light products of burning rise from the center of the white dwarf substantially more rapidly than the thermonuclear flame front propagates. As a result, a flame cannot completely burn the central part of the star, and instead is pushed to the outer layers of the white dwarf. The effect of bubble motion (large-scale convection) makes spherically symmetric models for thermonuclear supernovae unrealistic, which is of prime importance for the supernova spectrum and energy. The motion of bubbles is even faster in the case of a rotating white dwarf; under certain conditions, the centrifugal force may dominate over the gravitational force. To test this theory, we have carried out numerical simulations of supernovae explosions for various sizes of the burned region in the core of the presupernova. We have derived a relation between the rate of large-scale convection and the size of the burned region, which is specified by the rate of the deflagration in the thermonuclear burning.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号