首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
地球物理   2篇
地质学   3篇
天文学   2篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2013年   1篇
  2009年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Stochastic Environmental Research and Risk Assessment - Axial symmetry for covariance functions defined over spheres has been a very popular assumption for climate, atmospheric, and environmental...  相似文献   
2.
Using the new generation Earth’s gravity field models EIGEN-2S, GGM01S and EIGEN-GRACE02S generated by the space missions CHAMP and GRACE, we have obtained an accurate measurement of the Lense–Thirring effect with the LAGEOS and LAGEOS II satellites analyzing about 10 years of data with the EIGEN-2S and GGM01S models and about 11 years of data with EIGEN-GRACE02S. This new analysis is in agreement with our previous measurements of the Lense–Thirring effect using the LAGEOS satellites and obtained with the JGM-3 and EGM96 Earth’s models. However, the new determinations are more accurate and, especially, more robust than our previous measurements. In the present analysis we are only using the nodal rates of the two satellites, making no use of the perigee rate, as in our previous analyses. The perigee is affected by a number of non-gravitational perturbations difficult to be modelled and whose impact in the total error budget is not easy to assess. Using the EIGEN-2S model, we obtain a total error budget between 18% and 36% of the Lense–Thirring effect due to all the error sources. Specifically, by using EIGEN-2S, we obtain: μ = 0.85, with a total error between ±0.18 and ±0.36, with GGM01S we get μ = 1.06 with a total error between ±0.19 and ±0.24 and with EIGEN-GRACE02S we obtain μ = 0.99, with a total error between ±0.05 and ±0.1, i.e., between 5% and 10% of the general relativistic predicted value of the Lense–Thirring effect. In addition to the analyses using EIGEN-2S, GGM01S and EIGEN-GRACE02S without the use of the perigee, we have also performed an analysis using the older model EGM96 with our previous method of combining the nodes of the LAGEOS satellites with the perigee of LAGEOS II. However, this analysis was performed over a period of about 10 years, i.e. about 2.5 times longer than any our previous analysis. The result using EGM96 over this longer period of observation agrees with our previous results over much shorter periods and with the EIGEN-2S, GGM01S and EIGEN-GRACE02S measurements of μ. In addition to the accurate determination of frame-dragging and in agreement with our previous analyses of the orbits of the LAGEOS satellites, we have observed, since 1998, an anomalous change in the Earth quadrupole coefficient, J2 which agrees with recent findings of other authors. This anomalous variation of J2 is accurately observed both on the node of LAGEOS and LAGEOS II and it is independent of the model used, i.e., it is observed by using the model EGM96 or by using EIGEN-2S, GGM01S or EIGEN-GRACE02S. However, this anomalous variation of the Earth quadrupole coefficient does not affect at all our determination of the Lense–Thirring effect thanks to the total elimination of the J2-induced errors with our especially devised estimation technique.  相似文献   
3.
Discrete element modelling of drying shrinkage and cracking of soils   总被引:1,自引:0,他引:1  
This paper is aimed at showing the efficiency of discrete element modelling for the prediction and understanding of drying shrinkage and associated cracking. The discrete element approach used is presented first. Cohesive forces between grains, as well as drying shrinkage deformation, are included in the formulation. A numerical model is then used to simulate drying shrinkage experiments conducted on a fine-grained soil. The numerical simulations agree well with the experimental measurements. When drying shrinkage is constrained at the boundaries, and when moisture gradients develop in the drying soil, the model is able to predict the time of the occurrence of cracking, as well as the crack pattern formed. Finite element simulations and the discrete element approach both predict similar behaviours before cracking occurs. The proposed discrete element approach is highly promising for studying the origins and causes of cracking in soils.  相似文献   
4.
The interpretation protocols for defining offshore rifted margin architecture normally include seismic‐reflection analysis supplemented by refraction and/or potential field modelling to help constrain sedimentary, basement and Moho geometries at depth and/or the presence of magmatic material. Interpretation of modern high‐resolution long‐offset reflection profiles shows that significant mismatches may arise between the structural observations made from these data and the common translation of density, magnetic or velocity values into specific rock types made by geophysical models. We illustrate this problem with three examples from the Mid‐Norwegian rifted system, and discuss the implications with respect to the geological interpretation.  相似文献   
5.
Soils, as well as most of deformable multiphase porous materials, are likely to suffer from desiccation cracking, leading to the formation of regular crack patterns affecting their permeability. The ensuing crack spacing has often been related to a concept sometimes called “sequential infilling”: it is assumed that desiccation cracks are formed by successive generations. However, such a concept does not consider the pattern of a simultaneous crack formation at a given moment. Using our desiccation cracking test results and their numerical simulation, we propose a consistent explanation for the formation of desiccation crack patterns in soils. We show that the “sequential infilling” concept is suitable only when the position of the crack(s) clearly stems from the stress field. To derive an estimate of the desiccation crack spacing, the overall energy of the system needs to be considered. Statistical variability should be superimposed on the mean deterministic conditions discussed here.  相似文献   
6.
We have analysed LAGEOS II perigee rate and eccentricity vector excitation residuals over a period of about 7.8 years, adjusting and computing the satellite orbit with the full set of dynamical models included in the GEODYN II software code. The long-term behaviour of these orbital residuals appears to be characterised by several distinct frequencies which are a clear signature of the Yarkovsky-Schach perturbing effect. This non-gravitational perturbation is not included in the GEODYN II models for the orbit determination and analysis. Through an independent numerical analysis, and using the new LOSSAM model to represent the spin-axis behaviour of the satellite, we propagated the Yarkovsky-Schach effect on LAGEOS II perigee rate and compared the results obtained with the orbital residuals. We have thus been able to satisfactorily fit the amplitude of the Yarkovsky-Schach effect to the observed residuals. Our approach here has proven very successful with very positive results. We have been able to obtain a fractional reduction of about 40% of the post-fit rms with respect to the pre-fit value. When analysing the eccentricity vector residuals, we have been able to obtain a better result in the case of the real component, with a fractional reduction of the post-fit rms of about 49% of the initial value. The analysis of the effect's imaginary component in the eccentricity vector rate is more complicated and deserves additional scrutiny. In this case we need a deeper study which includes the analysis of other unmodelled and mismodelled effects acting on the imaginary component. The study performed in this paper will be of significant relevance not only for the geophysical applications involving LAGEOS II orbit analysis, but also for a refined re-analysis of the general relativistic precession produced by the Earth angular momentum, i.e., the Lense-Thirring effect.  相似文献   
7.
Nested covariance models, defined as linear combinations of basic covariance functions, are very popular in many branches of applied statistics, and in particular in geostatistics. A notorious limit of nested models is that the constants in the linear combination are bound to be nonnegative in order to preserve positive definiteness (admissibility). This paper studies nested models on d-dimensional spheres and spheres cross time. We show the exact interval of admissibility for the constants involved in the linear combinations. In particular, we show that at least one constant can be negative. One of the implications is that one can obtain a nested model attaining negative correlations. We provide characterization theorems for arbitrary linear combinations as well as for nonconvex combinations involving two covariance functions. We illustrate our findings through several examples involving nonconvex combinations of well-known parametric families of covariance functions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号