首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   1篇
  国内免费   1篇
测绘学   2篇
大气科学   1篇
地球物理   12篇
地质学   16篇
海洋学   1篇
天文学   6篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   8篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
排序方式: 共有38条查询结果,搜索用时 437 毫秒
1.
A FORTRAN program, consistent with the commercially available finite element (FE) code ABAQUS, is developed based on a three-dimensional (3D) linear elastic brittle damage constitutive model with two damage criteria. To consider the heterogeneity of rock, the developed FORTRAN program is used to set the stiffness and strength properties of each element of the FE model following a Weibull distribution function. The reliability of the program is assessed against available experimental results for granite cylindrical specimens with a throughgoing, flat and inclined fissure. The calibration procedure of the material parameters is explained in detail, and it is shown that the compressive to tensile strength ratio can have a substantial influence on the failure response of the specimens. Numerical simulations are conducted for models with different levels of heterogeneity. The results show a smaller load bearing capacity for models with less homogeneity, representing gradual coalescence of fully damaged elements forming throughout the models during loading. The maximum load bearing capacity is studied for various combinations of inclination angles of two centrally aligned, throughgoing and flat fissures of equal length embedded in cylindrical models under uniaxial and multiaxial loading conditions. The key role of the compressive to tensile strength ratio is highlighted by repeating certain simulations with a lower compressive to tensile strength ratio. It is proven that the peak loads of the rock models with sufficiently small compressive to tensile strength ratios containing two throughgoing fissures of equal length are similar, provided that the minimum inclination angles of the models are the same. The results are presented and discussed with respect to the existing experimental findings in the literature, suggesting that the numerical model applied in this study can provide useful insight into the failure behaviour of rock-like materials.  相似文献   
2.
Evaluation of slope stability, especially in the absence of a proper bed such as marine soils, is one of the most important issues in geotechnical engineering. Using geogrid layers to enhance the strength and stability of embankments is regarded as a commendable stabilization method. On the other hand, groundwater level erratically fluctuates in coastal areas. Therefore, the aim of this research is to study the effects of groundwater level changes on stability of a geogrid-reinforced slope on loose marine soils in Qeshm Island, Iran. At first, geotechnical properties of the site were obtained by comprehensive series of geotechnical laboratory and in situ tests. Then, by simultaneous changes of groundwater level and several parameters such as embankment slope, loading, geogrid length, geogrid number, and tensile strength of geogrid, different characteristics such as embankment safety factor (SF), vertical and horizontal displacements at embankment top and embankment base were studied. It was observed that groundwater level had significant effects on behavior of the embankment. For most of the observations, by decreasing the groundwater level, the displacements decreased and consequently safety factor increased. Increasing the length, number, and tensile strength of geogrid led to the reduction of displacements and an increase in the safety factor.  相似文献   
3.
A transversely isotropic multi‐layered half‐space, with axis of material symmetry perpendicular to the free surface, supports a flexible either annular or solid circle foundation. The contact area of the foundation and the half‐space is considered to be both frictionless and tensionless. The foundation is assumed to be affected by a vertical static axisymmetric load. Detailed analysis of the interaction of these two systems with different thickness of layers is the target of this paper. With the use of ring load Green's functions for both the foundation and the continuum half‐space, an integral equation accompanied with some inequalities is introduced to model the complex BVP. With the incorporation of ring‐shape FEM, we are capable of capturing both regular and singular solution smoothly. The validity of the combination of the analytical and numerical method is proved with comparing the results of this paper with a number of benchmark cases of both linear and nonlinear interaction of circular and annular foundation with half‐space. Some new illustrations are presented to portray the aspect of the anisotropy and layering of the half‐space. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
4.
An alternative method for non-negative estimation of variance components   总被引:1,自引:1,他引:0  
A typical problem of estimation principles of variance and covariance components is that they do not produce positive variances in general. This caveat is due, in particular, to a variety of reasons: (1) a badly chosen set of initial variance components, namely initial value problem (IVP), (2) low redundancy in functional model, (3) an improper stochastic model, and (4) data’s possibility of containing outliers. Accordingly, a lot of effort has been made in order to design non-negative estimates of variance components. However, the desires on non-negative and unbiased estimation can seldom be met simultaneously. Likewise, in order to search for a practical non-negative estimator, one has to give up the condition on unbiasedness, which implies that the estimator will be biased. On the other hand, unlike the variance components, the covariance components can be negative, so the methods for obtaining non-negative estimates of variance components are not applicable. This study presents an alternative method to non-negative estimation of variance components such that non-negativity of the variance components is automatically supported. The idea is based upon the use of the functions whose range is the set of all positive real numbers, namely positive-valued functions (PVFs), for unknown variance components in stochastic model instead of using variance components themselves. Using the PVF could eliminate the effect of IVP on the estimation process. This concept is reparameterized on the restricted maximum likelihood with no effect on the unbiasedness of the scheme. The numerical results show the successful estimation of non-negativity estimation of variance components (as positive values) as well as covariance components (as negative or positive values).  相似文献   
5.
Iran is a mountainous country with large lateral density variations of its crust. Constant density value is commonly used to determine the geoid models as well as topographic corrections. The effect of lateral density variation in the geoid can reach up to 14 cm in Iran which is not negligible in a precise geoid modelling. Also, the current height datum of Iran is based on the orthometric system but the effect of gravity variation was not applied in height parameter. Furthermore, the height systems of most neighbouring countries are defined as normal height. Connection of networks can be useful for the unification of height datum, geodynamics researches and optimal adjustment of levelling network. The new quasi-geoid model based on a recent EGM2008 global geo-potential model was created to solve the mentioned problem. The main purpose of the present study is to discuss the results of a research project in which a gravimetric quasi-geoid model for Iran was computed based on the least-squares modification of Stokes' formula. The evaluation is made using 475 GPS/levelling height anomalies covering the major parts of the country except the mountainous areas to the North and West. After a 7-parameter fit, the most promising attempt achieved a RMS value of 19 cm for the residuals based on the GPS/levelling data.  相似文献   
6.
7.
We present the analysis of a multi-azimuth vertical seismic profiling data set that has been acquired in a tight gas field with the objective of characterizing fracture distributions using seismic anisotropy. We investigate different measurements of anisotropy, which are shear-wave splitting, P-wave traveltime anisotropy and azimuthal amplitude variation with offset. We find that for our field case shear-wave splitting is the most robust measure of azimuthal anisotropy, which is clearly observed over two distinct intervals in the target. We compare the results of the vertical seismic profiling analysis with other borehole data from the same well. Cross-dipole sonic and Formation MicroImager data from the reservoir section suggest that no open fractures intersect the well or are present within half a metre of the borehole wall. Furthermore, a detailed dispersion analysis of the sonic scanner data provides no indication of stress-induced seismic anisotropy along the logged borehole section. We therefore explain the azimuthal anisotropy measured in the vertical seismic profiling data with a model that contains discrete fracture corridors, which do not intersect the well itself but lie within the vertical seismic profiling investigation radius. We show that such a model can reproduce some basic characteristics of azimuthal anisotropy observed in the vertical seismic profiling data. The model is also consistent with well test data that suggest the presence of a fracture corridor away from the well. With this study we demonstrate the necessity of integrating different data types that investigate different scales of rock volume and can provide complementary information for understanding the characteristics of fracture networks in the subsurface.  相似文献   
8.
Geological studies indicate that the southeastern Sanandaj–Sirjan Zone, located in the southeastern Zagros Orogenic Belt, is subdivided transversally into the Esfahan–Sirjan Block with typical Central Iranian stratigraphic features and the Shahrekord–Dehsard Terrane consisting of Paleozoic and Lower Mesozoic metamorphic rocks. The Main Deep Fault (Abadeh Fault) is a major lithospheric fault separating the two parts. The purpose of this paper is to clarify the role of the southeastern Sanandaj–Sirjan Zone in the tectonic evolution of the southeastern Zagros Orogenic Belt on the basis of geological evidence. The new model implies that Neo‐Tethys 1 came into being when the Central Iran Microcontinent split from the northeastern margin of Gondwana during the Late Carboniferous to Early Permian. During the Late Triassic a new spreading ridge, Neo‐Tethys 2, was created to separate the Shahrekord–Dehsard Terrane from Afro–Arabian Plate. The Zagros sedimentary basin was formed on a continental passive margin, southwest of Neo‐Tethys 2. The two ophiolitic belts of Naien–Shahrebabak–Baft and Neyriz were developed to the northeast of Neo‐Tethys 1 and southwest of Neo‐Tethys 2 respectively, related to the sinking of the lithosphere of the Neo‐Tethys 1 in the Late Cretaceous. It can be concluded that deposition of the Paleocene conglomerate on the Central Iran Microcontinent and Pliocene conglomerate in the Zagros Sedimentary Basin is directly linked to the uplift generated by collision.  相似文献   
9.
10.
ABSTRACT

In order to understand and adequately manage hydrological stress, it is necessary to simulate groundwater levels accurately. In this research, gene expression programming (GEP) and M5 model tree (M5) are used to simulate monthly groundwater levels. The models are combined with wavelet transform to produce two hybrid models: wavelet gene expression programming (WGEP) and wavelet M5 model tree (WM5). For the simulation, groundwater level, temperature and precipitation values from three observation wells and one meteorological station, located in Iran, are used. The results indicate that the hybrid models, WGEP and WM5, lead to a better performance than the simple models, GEP and M5. The performance of the two hybrid models is similar. It is also observed that selecting a suitable time lag for inputs plays an important role in the accuracy of the simple models. The selection of a suitable decomposition level strongly affects the accuracy of hybrid models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号