首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   6篇
  国内免费   4篇
大气科学   11篇
地球物理   22篇
地质学   21篇
海洋学   19篇
天文学   4篇
综合类   2篇
自然地理   2篇
  2021年   1篇
  2020年   2篇
  2019年   5篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   7篇
  2007年   9篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1997年   1篇
  1994年   1篇
  1991年   2篇
  1985年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
1.
2.
Two gravity cores collected off the modern Huanghe (Yellow River) delta in the southern Bohai Sea were analyzed for grain size, the total organic carbon (TOC)/total nitrogen (TN) ratio, color diffraction, magnetic susceptibility, 14C dating and 137Cs and 210Pb isotope contents to clarify changes in the sedimentary environment during the Holocene. In particular, the effect of natural and artificial river-course shifts of the Huanghe on the Bohai Sea sediment was investigated. A peat layer, scouring surface and sharp changes in the grain size, TOC/TN ratio, sediment color (L?, a?) and magnetic susceptibility were identified and are likely to be due to the early-Holocene sea-level rise resulting in environmental changes from coastal to shelf environments in the Bohai Sea. After the sea level reached its maximum at 6-7 ka BP, the lateral shifts in the river course of the Huanghe formed 10 superlobes, and superlobe 7 (11-1048 AD) and superlobe 10 (1855-present) of the Huanghe delta affected the core sites. The northern site of BH-239 has been more affected by the Huanghe since the middle Holocene. Notably, in the superlobe 10 period, the reshaping of the northern Huanghe delta due to an artificial river-course shift from northward to eastward in 1976 (e.g., a∼10 km shoreline retreat due to coastal erosion) was recorded in the core sediments, particularly in terms of the TOC/TN ratio, sediment color (L? and a?) and magnetic susceptibility, owing to the huge sediment supply from coastal erosion of the former river mouth area.  相似文献   
3.
Studies on recent earthquakes highlighted that buildings with minimal structural damage still suffer from extensive damage and failure of nonstructural components. The dropping and damage of suspended ceiling systems, which typically consist of acceleration-sensitive nonstructural elements, resulted in lengthy functional disruptions and extended recovery time. This article experimentally and analytically examined the vibration properties of an integrated ceiling system considering the interactions with surrounding electrical equipment. The theoretical stiffness and corresponding frequency of electrical equipment were initially derived and then verified by subsequent vibration tests and numerical analyses. The seismic performance of the air conditioner (AC) was evaluated with different installment configurations based on design spectra and floor response spectra. Vibration tests of the suspended integrated ceiling system considering the interactions with surrounding equipment showed that the inclusion of peripheral constraints increased the first horizontal vibration frequency of the ceiling system by a factor of approximately 6. The natural frequencies of all components in the integrated ceiling system were almost identical, which was attributed to the coupled behavior between the ceiling panels and surrounding equipment, emphasizing the effect of interactions between adjacent components during dynamic analysis. Based on the above experimental investigation, an associated numerical model of the integrated ceiling system was created. Finally, corresponding parametric studies that included the interactions with surrounding equipment, reinforcing braces of ACs and strengthening members at the rise-up location between two elevations were performed.  相似文献   
4.
Based on the stratigraphic sequence formed since the last glaciation and revealed by 3000 km long high-resolution shallow seismic profiles and the core QDZ03 acquired recently off the southern Shandong Peninsula, we addressed the sedimentary characteristics of a Holocene subaqueous clinoform in this paper. Integrated analyses were made on the core QDZ03, including sedimentary facies, sediment grain sizes, clay minerals, geochemistry, micro paleontology, and AMS 14 C dating. The result indicates that there exists a Holocene subaqueous clinoform, whose bottom boundary generally lies at 15–40 m below the present sea level with its depth contours roughly parallel to the coast and getting deeper seawards. The maximum thickness of the clinoform is up to 22.5 m on the coast side, and the thickness contours generally spread in a banded way along the coastline and becomes thinner towards the sea. At the mouths of some bays along the coast, the clinoform stretches in the shape of a fan and its thickness is evidently larger than that of the surrounding sediments. This clinoform came into being in the early Holocene(about 11.2 cal kyr BP) and can be divided into the lower and upper depositional units(DU 2 and DU 1, respectively). The unit DU 2, being usually less than 3 m in thickness and formed under a low sedimentation rate, is located between the bottom boundary and the Holocene maximum flooding surface(MFS), and represents the sediment of a post-glacial transgressive systems tract; whereas the unit DU 1, the main body of the clinoform, sits on the MFS, belonging to the sediment of a highstand systems tract from middle Holocene(about 7–6 cal kyr BP) to the present. The provenance of the clinoform differs from that of the typical sediments of the Yellow River and can be considered as the results of the joint contribution from both the Yellow River and the proximal coastal sediments of the Shandong Peninsula, as evidenced by the sediment geochemistry of the core. As is controlled mainly by coactions of multiple factors such as the Holocene sea-level changes, sediment supplies and coastal dynamic conditions, the development of the clinoform is genetically related with the synchronous clinoform or subaqueous deltas around the northeastern Shandong Peninsula and in the northern South Yellow Sea in the spatial distribution and sediment provenance, as previously reported, with all of them being formed from the initial stage of the Holocene up to the present.  相似文献   
5.
The Huanghe, the second largest river in China, is now under great pressure as a water resource. Using datasets of river water discharge, water consumption and regional precipitation for the past 50 years, we elucidate some connections between decreasing water discharges, global El Niño/Southern Oscillation (ENSO) events and anthropogenic impacts in the drainage basin. Global ENSO events, which directly affected the regional precipitation in the river basin, resulted in approximately 51% decrease in river water discharge to the sea. The degree of anthropogenic impacts on river water discharge is now as great as that of natural influences, accelerating the water losses in the hydrological cycle. The large dams and reservoirs regulated the water discharge and reduced the peak flows by storing the water in the flood season and releasing it in the dry season as needed for agricultural irrigation. Thus, as a result, large dams and reservoirs have shifted the seasonal distribution patterns of water discharge and water consumption and finally resulted in rapidly increasing water consumption. Meanwhile, the annual distribution pattern of water consumption also changed under the regulation of dams and reservoirs, indicating that the people living in the river basin consume the water more and more to suit actual agricultural schedule rather than depending upon natural pattern of annual precipitation. The combination of the increasing water consumption facilitated by the dams and reservoirs and the decreasing precipitation closely associated with the global ENSO events over the past half century has resulted in water scarcity in this world-famous river, as well as in a number of subsequent serious results for the river, delta and coastal ocean.  相似文献   
6.
Organic molecules such as proteins can be preserved in certain fossils. The bulk properties of fossil proteins of both vertebrates and invertebrates have been studied for over half a century. Named proteins have so far been identified, however, only in vertebrate fossils, such as collagen from mammoth bones. Using immunological assays, we examined 1500 year old fossils of the extinct land snail Mandarina luhuana from the Bonin islands for the presence of dermatopontin, a molluscan shell matrix protein. First, we examined the shell microstructure and mineralogy of the fossil shells using scanning electron microscopy (SEM) and powder X-ray diffraction (XRD) in order to estimate the extent of diagenetic alteration. The results suggest that the original microstructure and mineralogy of the shells are preserved. Antiserum raised against the Type-1 dermatopontin fragment of the living land snail Euhadra brandtii showed significant immunological reactivity with the extracts from the fossil shells of M. luhuana. Immunological binding curves drawn for the shell extracts of extant M. aureola and the extinct M. luhuana confirmed the presence of dermatopontin in the fossil shells and provided an estimate that about 75–98% of the original dermatopontin was lost from the M. luhuana fossils. This is the first report of a named protein being identified in invertebrate fossils.  相似文献   
7.
Lower-tropospheric tropical synoptic-scale disturbances (TSDs) are associated with severe weather systems in the Asian Monsoon region. Therefore, exact prediction of the development and behavior of TSDs using atmospheric general circulation models is expected to improve weather forecasting for this region. Recent state-of-the art global cloud-system resolving modeling approaches using a Nonhydrostatic Icosahedral Atmospheric Model (NICAM) may improve representation of TSDs. This study evaluates TSDs over the western Pacific in output from an Atmospheric Model Intercomparison Project (AMIP)-like control experiment using NICAM. Data analysis compared the simulated and observed fields. NICAM successfully simulates the average activity, three-dimensional structures, and characteristics of the TSDs during the Northern summer. The variance statistics and spectral analysis showed that the average activity of the simulated TSDs over the western Pacific during Northern summer broadly captures that of observations. The composite analysis revealed that the structures of the simulated TSDs resemble the observed TSDs to a large degree. The simulated TSDs exhibited a typical southeast- to northwest-oriented wave-train pattern that propagates northwestward from near the equator around 150 ° E toward the southern coast of China. However, the location of the simulated wave train and wave activity center was displaced northward by approximately a few degrees of latitude from that in the observation. This displacement can be attributed to the structure and strength of the background basic flow in the simulated fields. Better representation of the background basic states is required for more successful simulation of TSDs.  相似文献   
8.
The December 26, 2003 Mw 6.6 Bam earthquake is one of the most disastrous earthquakes in Iran. QuickBird panchromatic and multispectral satellite imagery with 61 cm and 2.4 m ground resolution, respectively provide new insights into the surface rupturing process associated with this earthquake. The results indicate that this earthquake produced a 2–5 km-wide surface rupture zone with a complex geometric pattern. A 10-km-long surface rupture zone developed along the pre-existing Bam fault trace. Two additional surface rupture zones, each 2–5 km long, are oblique to the pre-existing Bam fault in angles of 20–35°. An analysis of geometric and geomorphic features also shows that movement on the Bam fault is mainly right-lateral motion with some compressional component. This interpretation is consistent with field investigations, analysis of aftershocks as well as teleseismic inversion. Therefore, we suggest that the 2003 Bam earthquake occurred on the Bam fault, and that the surface ruptures oblique to the Bam fault are caused by secondary faulting such as synthetic shears (Reidel shears). Our fault model for the Bam earthquake provides a new tectonic scenario for explaining complex surface deformations associated with the Bam earthquake.  相似文献   
9.
We studied the temporal behavior of the background shallow seismicity rate in 700 circular areas across inland Japan. To search for and test the significance of the possible rate changes in background seismicity, we developed an efficient computational method that applies the space–time ETAS model proposed by Ogata in 1998 to the areas. Also, we conducted Monte Carlo tests using a simulated catalog to validate the model we applied. Our first finding was that the activation anomalies were found so frequently that the constant background seismicity hypothesis may not be appropriate and/or the triggered event model with constraints on the parameters may not adequately describe the observed seismicity. However, quiescence occasionally occurs merely by chance. Another outcome of our study was that we could automatically find several anomalous background seismicity rate changes associated with the occurrence of large earthquakes. Very significant seismic activation was found before the M6.1 Mt. Iwate earthquake of 1998. Also, possible seismic quiescence was found in an area 150 km southwest of the focal region of the M7.3 Western Tottori earthquake of 2000. The seismicity rate in the area recovered after the mainshock.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号