首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
大气科学   3篇
地球物理   1篇
地质学   1篇
海洋学   1篇
  2020年   1篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2002年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
The carrying capacity for bivalve shellfish culture in Saldanha Bay, South Africa, was analysed through the application of the well-tested EcoWin ecological model, in order to simulate key ecosystem variables. The model was set up using: (i) oceanographic and water-quality data collected from Saldanha Bay, and (ii) culture-practice information provided by local shellfish farmers. EcoWin successfully reproduced key ecological processes, simulating an annual mean phytoplankton biomass of 7.5 µg Chl a l–1 and an annual harvested shellfish biomass of about 3 000 tonnes (t) y–1, in good agreement with reported yield. The maximum annual carrying capacity of Small Bay was estimated as 20 000 t live weight (LW) of oysters Crassostrea gigas, or alternatively 5 100 t LW of mussels Mytilus galloprovincialis, and for Big Bay as 100 000 t LW of oysters. Two production scenarios were investigated for Small Bay: a production of 4 000 t LW y–1 of mussels, and the most profitable scenario for oysters of 19 700 t LW y–1. The main conclusions of this work are: (i) in 2015–2016, both Small Bay and Big Bay were below their maximum production capacity; (ii) the current production of shellfish potentially removes 85% of the human nitrogen inputs; (iii) a maximum-production scenario in both Big Bay and Small Bay would result in phytoplankton depletion in the farmed area; (iv) increasing the production intensity in Big Bay would probably impact the existing cultures in Small Bay; and (v) the production in Small Bay could be increased, resulting in higher income for farmers.  相似文献   
2.
It has long been recognized that albedo related vegetation feedbacks amplify climate variability in North Africa. Recent studies have revealed that areas of very high albedo associated with certain desert soil types contribute to the current dry climate of the region. We construct three scenarios of North African albedo, one based on satellite measurements, one where the highest albedo resembles that of soils in the desert transition zones, and one based on a vegetation map for the “green Sahara” state of the middle Holocene, ca. 6,000 years ago. Using a series of climate model simulations, we find that the additional amplitude of albedo change from the middle Holocene to the present caused by the very bright desert soils enhances the magnitude of the June-to-August precipitation change in the region of the present Sahara from 0.6 to 1.0 mm/day on average. We also find that albedo change has a larger effect on regional precipitation than changes in either the Earth’s orbit or sea surface temperatures between 6,000 years ago and today. Simulated precipitation agrees rather well with present observations and mid Holocene reconstructions. Our results suggest that there may exist an important climate feedback from soil formation processes that has so far not been recognized.  相似文献   
3.
The goal of this work was to investigate the changes in copper behavior in Igua?u River, a body of water strongly affected by urban inputs. This work was carried out in a subtropical Brazilian watershed suffering with high loads of raw sewage discharges from the Metropolitan Region of Curitiba. A comparison between sampling sites located upstream and downstream from the urban region revealed that human inputs are able to modify the water chemistry of the river in a short distance basis, that is, approximately nine miles. Probably, the most important alterations were the creation of an anaerobic environment as well as the enhancement of humic-coated suspended solids. These two aspects were determinant to explain the high concentrations observed for particulate copper (57% of total recoverable copper) and dissolved copper sulfide species (13%) in the water column. Copper in the sediment was also higher in the downstream site, probably due to the sedimentation of the Cu-enriched particles. However, copper sulfides at the bottom sediment may also be a potential source for the metal in the water column due to the creation of anaerobic conditions in both compartments. Labile copper concentration was not affected by the changes in water chemistry. Despite the fact that sewage discharges motivate the enhancement of organic matter, but not the increase in potential complexing agents, additional ligands such as chloride, carbonates, and anthropogenic dissolved organic ligands can be now computed as a part of the labile fraction.  相似文献   
4.
We evaluated the alterations of organochlorinated compounds such as polychlorobiphenyls (PCB), dichloro-diphenyl-dichloroethylene (DDE) and dichloro-diphenyl-trichloroethane (DDT) on the thyroid in wild and cultured sea bass (Dicentrarchus labrax) at environmental concentrations. These compounds influence the endocrine system of many fish species and are qualified as endocrine disruptors. The thyroid seems to be a target organ. Two alteration endpoints: the thyroid histology and the muscular thyroid hormone concentrations, were used simultaneously.High concentrations in PCBs and DDT were detected in muscles, supporting the idea that the Mediterranean fauna could be more polluted than the Atlantic fauna. The high abundance of DDE indicates a progressive degradation of remnant DDT load and the absence of new inputs in this area. Aquaculture sea bass shows a significant higher amount of pollutants on fresh weight basis (especially PCBs) in their muscles compared to the wild sea bass. Those differences may be related mainly to the contaminations of diet.Thyroid parameters vary between wild and aquaculture sea bass, wild sea bass were characterized by higher follicle diameters, epithelial cell heights and muscular T4 concentrations. A significant relationship between persistent organic pollutants (muscular PCBs and DDT concentration) and the different thyroid parameters (diameters of follicles, epithelial cell heights and muscular T4 levels) could be observed, which support the hypothesis that these compounds have an adverse impact on thyroid morphometry and function.  相似文献   
5.
Global warming caused by anthropogenic CO2 emissions is expected to reduce the capability of the ocean and the land biosphere to take up carbon. This will enlarge the fraction of the CO2 emissions remaining in the atmosphere, which in turn will reinforce future climate change. Recent model studies agree in the existence of such a positive climate–carbon cycle feedback, but the estimates of its amplitude differ by an order of magnitude, which considerably increases the uncertainty in future climate projections. Therefore we discuss, in how far a particular process or component of the carbon cycle can be identified, that potentially contributes most to the positive feedback. The discussion is based on simulations with a carbon cycle model, which is embedded in the atmosphere/ocean general circulation model ECHAM5/MPI-OM. Two simulations covering the period 1860–2100 are conducted to determine the impact of global warming on the carbon cycle. Forced by historical and future carbon dioxide emissions (following the scenario A2 of the Intergovernmental Panel on Climate Change), they reveal a noticeable positive climate–carbon cycle feedback, which is mainly driven by the tropical land biosphere. The oceans contribute much less to the positive feedback and the temperate/boreal terrestrial biosphere induces a minor negative feedback. The contrasting behavior of the tropical and temperate/boreal land biosphere is mostly attributed to opposite trends in their net primary productivity (NPP) under global warming conditions. As these findings depend on the model employed they are compared with results derived from other climate–carbon cycle models, which participated in the Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP).
T. J. RaddatzEmail:
  相似文献   
6.
The present paper summarises results on the emission of biogenicvolatile organic compounds (BVOC) achieved within the frame of thenational `German Tropospheric Research Programme' (TFS) between 1997 and2000. Field measurements were carried out at the meteorologicalmonitoring station `Hartheimer Wald' located in the vicinity of Freiburg(upper Rhine valley), Germany, within a pine plantation dominated byScots pine (Pinus sylvestris L.). The measured BVOC emissionrates were used to determine the daily and seasonal variation of BVOCemission and its dependence on important meteorological and plantphysiological parameters. In parallel, laboratory experiments usingyoung trees of pine (P. sylvestris), poplar (Populustremula ×P. alba) and pedunculate oak (Quercusrobur L.) were performed, and the influence of abiotic (e.g.,light, temperature, seasonality, flooding) factors on the biosynthesisand emission of BVOC was quantified. Based on these data, emissionalgorithms were evaluated and a process-oriented numerical model for thesimulation of the isoprene emission by plants was developed. Inaddition, newly calculated land use and tree species distributions wereused for the calculation of an actual BVOC emission inventory ofGermany.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号