首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   2篇
  2020年   1篇
  2019年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
In this work, an experimental study was carried out with the aim of reconciling static and dynamic stiffness of Opalinus Clay. The static and dynamic stiffness of core plugs from a shaly and a sandy facies of Opalinus Clay were characterized at two different stress states. The measurements included undrained quasi-static loading–unloading cycles from which the static stiffness was derived, dynamic stiffness measurement at seismic frequencies (0.5–150 Hz) and ultrasonic velocity measurements (500 kHz) probing the dynamic stiffness at ultrasonic frequencies. The experiments were carried out in a special triaxial low-frequency cell. The obtained results demonstrate that the difference between static and dynamic stiffness is due to both dispersion and non-elastic effects: Both sandy and shaly facies of Opalinus Clay exhibit large dispersion, that is, a large frequency dependence of dynamic stiffness and acoustic velocities. Especially dynamic Young's moduli exhibit very high dispersion; between seismic and ultrasonic frequencies they may change by more than a factor 2. P-wave velocities perpendicular to bedding are by more than 200 m/s higher at ultrasonic frequencies than at seismic frequencies. The static undrained stiffness of both sandy and shaly facies is strongly influenced by non-elastic effects, resulting in significant softening during both loading and unloading with increasing stress amplitude. The zero-stress extrapolated static undrained stiffness, however, reflects the purely elastic response and agrees well with the dynamic stiffness at seismic frequency.  相似文献   
2.
Climate change is inevitably altering the hydrological regime of water bodies. The interest in changing behaviour of intermittent rivers is increasing in many countries. This research was focused on intermittent rivers (rivers which naturally, periodically cease to flow) in Lithuania. The purpose of this research was to provide an overview of flow intermittency phenomena according to available data in a historical period and to evaluate the impact of catchment geographical features and climate variability on zero-flow events. The calculated indices of flow intermittency showed that the selected rivers had very different flow regimes. The threshold for the separation of typically intermittent rivers from only occasionally intermittent ones was suggested. Multiple linear regression analysis defined the crucial role of catchment size and watercourse slope on the river cessation process in Lithuania. The applied non-parametric Wilcoxon–Mann–Whitney test revealed the significance of the relationship between precipitation (in June–September) and zero-flow duration. Flow intermittency phenomena in Lithuanian rivers were linked to a low-frequency teleconnection pattern (SCAND index). A methodology of estimating the relation between river intermittency and large-scale atmospheric circulation pattern (based on SCAND index) was created. The generated regression equations between flow intermittency indices and catchment characteristics might be useful for the estimation of zero-flows in ungauged river catchments. The main aspect of future investigations might be related to forecasting flow intermittency using modern hydrological models and climate scenarios as well as the defined relationships between zero-flow indices and physico-geographical features of river catchments.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号