首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
地球物理   2篇
自然地理   1篇
  2015年   1篇
  2014年   1篇
  1999年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Among the difficulties that influence future dam operations,reservoir sedimentation is the most problematic for engineers.This study predicted the amount and pattern of sedimentation for use in estimation of the useful lifespan of reservoirs and identification of optimal locations for outlets and intakes at the initial stages of dam design.Hydrographic surveys of different dams can provide better insight into this phenomenon.Latian Dam in Iran has conducted hydrographic surveys during 7 time periods.The amount and process of sedimentation in this reservoir were determined,and predictions of distribution of sediments were validated by well-known,common methods.The formation of a delta in the reservoir was investigated for different time periods after operation.Future problems due to the impacts of sedimentation on dam operation and the useful lifespan of the reservoir were predicted.In addition,the study results may be used for developing empirical methods to predict sedimentation patterns in other reservoirs.  相似文献   
2.
3.
The present work develops an approach to seamlessly blend satellite, available radar, climatological and gauge precipitation products to fill gaps in ground‐based radar precipitation field. To mix different precipitation products, the error of any of the products relative to each other should be removed. For bias correction, the study uses an ensemble‐based method that aims to estimate spatially varying multiplicative biases in SPEs using a radar precipitation product. A weighted successive correction method (SCM) is used to make the merging between error corrected satellite and radar precipitation estimates. In addition to SCM, we use a combination of SCM and Bayesian spatial model for merging the rain gauges (RGs) and climatological precipitation sources with radar and SPEs. We demonstrated the method using a satellite‐based hydro‐estimator; a radar‐based, stage‐II; a climatological product, Parameter‐elevation Regressions on Independent Slopes Model and a RG dataset for several rain events from 2006 to 2008 over an artificial gap in Oklahoma and a real radar gap in the Colorado River basin. Results show that: the SCM method in combination with the Bayesian spatial model produced a precipitation product in good agreement with independent measurements. The study implies that using the available radar pixels surrounding the gap area, RG, Parameter‐elevation Regressions on Independent Slopes Model and satellite products, a radar‐like product is achievable over radar gap areas that benefit the operational meteorology and hydrology community. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号