首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地球物理   2篇
地质学   2篇
海洋学   7篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2012年   1篇
  2006年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
The most important feature of the distribution of the alkalinity and calcium in the Sea of Japan—the increase in the potential alkalinity with depth under the conditions when the waters are supersaturated in relation to calcium carbonate—is considered. It is demonstrated that this fact cannot be accounted for by the reaction of the formation-dissolution of calcium carbonate. A new concept explaining the alkalinity distribution in the sea is proposed. According to it, the biological pump is the basic process responsible for the alkalinity transport from the euphotic layer into the interior of the sea. Photosynthesis is the driving force for this process. The role of the active element transporting the alkalinity is not calcium carbonate, as has been claimed elsewhere, but extracellular polysaccharides (EPSs) produced by phytoplankton. EPSs bind to calcium and other cations to form transparent exopolymer particles (TEPs). The proposed conception makes it possible to explain the following: (a) the vertical flux of calcium carbonate that is independent of the super-saturation—undersaturation state of the ambient water regarding calcium carbonate; (b) the existence of the calcium carbonate flux regardless of the nature of the plankton skeletons; (c) the nonstoichiometric ratio between the alkalinity and calcium fluxes.  相似文献   
2.

The hypoxia of the bottom waters in the Razdolnaya River estuary was observed for the first time in September 2014 during the survey. It is formed as in the seaward part: oxygen is absorbed as a result of destruction of excessive phytoplankton biomass that settles to the bottom and is synthesized on the upper horizon. The high value of primary production in the riverine part of the estuary was caused by the pycnocline formed. Thus, phytoplankton “blooms” above and undergoes destruction beneath the pycnocline. Oxygen is distributed symmetrically in both parts of the estuary with respect to a bar: similar oxygen concentrations, which are maximum on the surface and minimum at the bottom, 300 and <60 μm/L, respectively, are recorded. The anomalies of hydrochemical parameters that have been formed during this process are sharply different in the two parts of the estuary, which most vividly manifests itself in the N/P value and the partial pressure of carbon dioxide pCO2. The causes of this unique situation are discussed.

  相似文献   
3.
Oceanology - In February and July 2014, multidisciplinary geochemical studies of the sediments were carried out at two stations. One of them was located in Voevoda Bight, which has a bottom depth...  相似文献   
4.
Water Resources - Field studies of the seasonal and daily dynamics of the mixing zone were carried out in the microtidal estuary of the Partizanskaya River. The position of the mixing zone was...  相似文献   
5.
The hydrological and hydrochemical parameters of the Tumen River estuary were collected at 13 stations in May and October 2015. Vertical temperature, conductivity, dissolved oxygen, chlorophyll fluorescence, and turbidity profiles were obtained. Water was sampled from the surface and bottom layer. The water samples were analyzed for major ions, pH, salinity, concentrations of dissolved oxygen, major nutrients, dissolved organic carbon, humic matter, and δ18О and δD isotopes. This estuary is attributed to microtidal type with a flushing time of about 10 h. A phytoplakton bloom occurred in the top layer of the estuary. For surface horizons, the hydrochemical parameters show a linear correlation with salinity. In the bottom horizons, all these parameters, except for major ions and δ18О and δD isotopes, reveal substantial nonconservative behavior. The nonconservative behavior of the hydrochemical parameters in the bottom waters was mainly caused by degradation of the phytoplankton biomass at the water/sediment interface. Hypoxic conditions were established in the bottom waters of the estuary in May.  相似文献   
6.
Lobanov  V. B.  Sergeev  A. F.  Kim  G.  Nam  S.  Maryina  E. N.  Han  H.  Popov  O. S.  Tishchenko  P. P.  Vlasova  G. A.  Zverev  S. A.  Choi  S. J.  Jeong  H.  Kim  B.  Kim  Y.  Kim  S. Y.  Lee  I.  Lee  H.  Lee  H.  Leusov  A. E.  Mariaysh  A. A.  Prushkovskaya  I. A.  Rudykh  Y. N.  Ryu  Y.  Ryumina  A. A.  Sagalaev  S. G.  Semkin  P. Y.  Seo  H.  Shkirnikova  E. M.  Shlyk  N. V.  Shvetsova  M. G.  Tsoi  V.  Ulanova  O. A. 《Oceanology》2021,61(4):586-588
Oceanology - Multiyear monitoring of the marine environment of the Japan/East Sea was continued by the joint Korean–Russian expedition of the R/V Akademik Oparin (cruise 58) in...  相似文献   
7.
Oceanology - The hydrological and hydrochemical data of surface and bottom waters of Academy Bay were obtained on two POI FEB RAS cruises carried out from July 11 to 14, 2016 and from September 15...  相似文献   
8.
The contribution of organic matter (humic compounds) to the alkaline reserve of seawater in the Sea of Japan, in the Razdol’naya River estuarine waters, and in the interstitial waters of the sediments of the Sea of Okhotsk was characterized using two procedures for alkalinity measurements: the method by Bruevich and that of the sample equilibrium with air. It was found that the surface waters of the Sea of Japan contained about 20 μmol/kg of alkalinity of organic origin, and this value twofold decreased with depth. For most of the actual cases of the calculations of the seawater carbonate system, this value may be neglected. Meanwhile, the contribution of organic alkalinity to the Razdol’naya River waters amounts to nearly 120 μmol/kg. It was shown that, if this value in the calculation of the carbonate system of the Razdol’naya River estuary-Amur Bay is neglected, this may cause gross errors in the values of the partial pressure of carbon dioxide (the error might be over 1500 μatm) and in the dissolved inorganic carbon (an error over 150 μmol/kg). The maximum absolute contribution of the humic matter (over 300 μmol/kg) was found for the interstitial waters in selected sediments of the Sea of Okhotsk. In the interstitial waters of these sediments, humic matter concentrations as high as 300 mg/l were detected. The data obtained show that the determination of the amount of humic matter must be an indispensable condition for an adequate analysis of estuarine carbonate systems and of the interstitial water in reduced marine sediments.  相似文献   
9.
Water Resources - In the period of summer flood 2016, a number of chemical characteristics associated with carbon cycle were studied in the estuaries of the Syran and Ul’ban rivers in the...  相似文献   
10.
During Cruise 62nd of the R/V “Professor Gagarinsky” in September, 2014, the carbonate system of sediments and contents of nutrients and organic carbon in pore water were studied in two geochemical stations located in hypoxia areas in the Peter the Great Bay. It was established that the concentrations of silica, phosphorus, and ammonium increase by 5, 10, and 20 times, respectively, with sediment depth to 70–80 cm. The alkalinity, dissolved inorganic carbon, and the partial pressure of carbon dioxide significantly increase with depth, while рН value and organic matter (ОM) decrease. Changes in the chemical composition of pore water with sediment depth (0–80 cm) are caused by anaerobic microbial degradation of OM, concentration of which in the top sediment layer is 2–3%. The degradation products of OM in the bottom waters of bay and pore waters of bottom sediments indicate that its main sources are diatoms. During hypoxia, the oxygen demand rate by sediment surface near Furugelm Island is estimated to be 5 mmol/(m2 day). A combination of such factors as downwelling circulation, the absence of photosynthetically active radiation, and the high oxygen demand rate at the water/sediment interface provides hypoxia formation in the depressions of the Peter the Great Bay bottom topography.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号