首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   3篇
  2020年   1篇
  2019年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Part one of this paper reported results from experimental compaction measurements of unconsolidated natural sand samples with different mineralogical compositions and textures. The experimental setup was designed with several cycles of stress loading and unloading applied to the samples. The setup was aimed to simulate a stress condition where sediments underwent episodes of compaction, uplift and erosion. P-wave and S-wave velocities and corresponding petrophysical (porosity and density) properties were reported. In this second part of the paper, rock physics modelling utilizing existing rock physics models to evaluate the model validity for measured data from part one were presented. The results show that a friable sand model, which was established for normally compacted sediments is also capable of describing overconsolidated sediments. The velocity–porosity data plotted along the friable sand lines not only describe sorting deterioration, as has been traditionally explained by other studies, but also variations in pre-consolidation stress or degree of stress release. The deviation of the overconsolidated sands away from the normal compaction trend on the VP/VS and acoustic impedance space shows that various stress paths can be predicted on this domain when utilizing rock physics templates. Fluid saturation sensitivity is found to be lower in overconsolidated sands compared to normally consolidated sands. The sensitivity decreases with increasing pre-consolidation stress. This means detectability for four-dimensional fluid saturation changes can be affected if sediments were pre-stressed and unloaded. Well log data from the Barents Sea show similar patterns to the experimental sand data. The findings allow the development of better rock physics diagnostics of unloaded sediments, and the understanding of expected 4D seismic response during time-lapse seismic monitoring of uplifted basins. The studied outcomes also reveal an insight into the friable sand model that its diagnostic value is not only for describing sorting microtextures, but also pre-consolidation stress history. The outcome extends the model application for pre-consolidation stress estimation, for any unconsolidated sands experiencing similar unloading stress conditions to this study.  相似文献   
2.
Relationship between different geomechanical and acoustic properties measured from seven laboratory-tested unconsolidated natural sands with different mineralogical compositions and textures were presented. The samples were compacted in the uniaxial strain configuration from 0.5 to 30 MPa effective stress. Each sand sample was subjected to three loading–unloading cycles to study the influence of stress reduction. Geomechanical, elastic and acoustic parameters are different between normal compaction and overconsolidation (unloaded and reloaded). Stress path (K0) data differ between normal consolidated and overconsolidated sediments. The K0 value of approximately 0.5 is founded for most of the normal consolidated sands, but varies during unloading depending on mineral compositions and textural differences. The K0 and overconsolidation ratio relation can be further simplified and can be influenced by the material compositions. K0 can be used to estimate horizontal stress for drilling applications. The relationship between acoustic velocity and geomechanical is also found to be different between loading and unloading conditions. The static moduli of the overconsolidated sands are much higher than normal consolidated sands as the deformation is small (small strain). The correlation between dynamic and static elastic moduli is stronger for an overconsolidation stage than for a normal consolidation stage. The results of this study can contribute to geomechanical and acoustic dataset which can be applied for many seismic-geomechanics applications in shallow sands where mechanical compaction is the dominant mechanism.  相似文献   
3.
This paper part one is set out to lay primary observations of experimental compaction measurements to form the basis for rock physics modelling in paper part two. P- and S-wave velocities and corresponding petrophysical (porosity and density) properties of seven unconsolidated natural sands with different mineralogical compositions and textures are reported. The samples were compacted in a uniaxial strain configuration from 0.5 up to 30 MPa effective stresses. Each sand sample was subjected to three loading cycles to study the influence of stress reduction on acoustic velocities and rock physical properties with the key focus on simulating a complex burial history with periods of uplift. Results show significant differences in rock physical properties between normal compaction and overconsolidation (unloaded and reloaded). The differences observed for total porosity, density, and P- and S-wave velocities are attributed to irrecoverable permanent deformation. Microtextural differences affect petrophysical, acoustic, elastic and mechanical properties, mostly during normal consolidation but are less significant during unloading and reloading. Different pre-consolidation stress magnitudes, stress conditions (isotropic or uniaxial) and mineral compositions do not significantly affect the change in porosity and velocities during unloading as a similar steep velocity–porosity gradient is observed. The magnitude of change in the total porosity is low compared to the associated change in P- and S-wave velocities during stress release. This can be explained by the different sensitivity of the porosity and acoustic properties (velocities) to the change in stress. Stress reduction during unloading yields maximum changes in the total porosity, P- and S-wave velocities of 5%, 25%, and 50%, respectively. These proportions constitute the basis for the following empirical (approximation) correlations: Δϕ ∼ ±5 ΔVP and ΔVP ∼ ±2ΔVS. The patterns observed in the experiments are similar to well log data from the Barents Sea. Applications to rock physics modelling and reservoir monitoring are reported in a companion paper.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号