首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
地球物理   12篇
地质学   2篇
自然地理   1篇
  2016年   1篇
  2014年   2篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2006年   2篇
  2003年   1篇
  2002年   1篇
  1996年   2篇
  1992年   1篇
  1980年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Strack OD 《Ground water》2006,44(1):91-98
We deal in this paper with an ongoing development of the analytic element method. We present in outline new analytic line elements that are suitable to model general flow fields, i.e., flow fields that possess a continuously varying areal inflow or outflow. These elements are constructed specifically to model the leakage through leaky layers that separate aquifers in leaky systems and to model transient effects. The leakage or release from storage underneath linear features is modeled precisely by the new elements; the singularity in leakage is matched exactly by the approximate solution. Applications are given for a problem involving leakage and for a case of transient flow. We note that the analytic elements can be used also to reproduce the effect of continuously varying aquifer properties, e.g., the hydraulic conductivity or the elevation of the base of the aquifer. In the latter case, the elements would reproduce the rotation of the flow field caused by the variation in properties, rather than the divergence as for the case of leakage.  相似文献   
2.
Methods to derive the differential equation of the free surface boundary   总被引:2,自引:0,他引:2  
Wang XS  Neuman SP  Strack OD  Verruijt A  Jamali M  Seymour B  Bear J  Cheng AH 《Ground water》2011,49(2):133-42; discussion 142-3
  相似文献   
3.
Future Directions of Electromagnetic Methods for Hydrocarbon Applications   总被引:3,自引:2,他引:1  
For hydrocarbon applications, seismic exploration is the workhorse of the industry. Only in the borehole, electromagnetic (EM) methods play a dominant role, as they are mostly used to determine oil reserves and to distinguish water from oil-bearing zones. Throughout the past 60 years, we had several periods with an increased interest in EM. This increased with the success of the marine EM industry and now electromagnetics in general is considered for many new applications. The classic electromagnetic methods are borehole, onshore and offshore, and airborne EM methods. Airborne is covered elsewhere (see Smith, this issue). Marine EM material is readily available from the service company Web sites, and here I will only mention some future technical directions that are visible. The marine EM success is being carried back to the onshore market, fueled by geothermal and unconventional hydrocarbon applications. Oil companies are listening to pro-EM arguments, but still are hesitant to go through the learning exercises as early adopters. In particular, the huge business drivers of shale hydrocarbons and reservoir monitoring will bring markets many times bigger than the entire marine EM market. Additional applications include support for seismic operations, sub-salt, and sub-basalt, all areas where seismic exploration is costly and inefficient. Integration with EM will allow novel seismic methods to be applied. In the borehole, anisotropy measurements, now possible, form the missing link between surface measurements and ground truth. Three-dimensional (3D) induction measurements are readily available from several logging contractors. The trend to logging-while-drilling measurements will continue with many more EM technologies, and the effort of controlling the drill bit while drilling including look-ahead-and-around the drill bit is going on. Overall, the market for electromagnetics is increasing, and a demand for EM capable professionals will continue. The emphasis will be more on application and data integration (bottom-line value increase) and less on EM technology and modeling exercises.  相似文献   
4.
An analytical solution is presented for a buoyant tunnel in an elastic half‐plane. The tunnel undergoes a prescribed displacement along its boundary, and the surface of the half‐plane is stress‐free. The solution uses the complex variable method and consists of conformally mapping the hole and half‐plane to an annular region. The complex potentials each contain two logarithmic terms due to the resultant buoyancy force acting on the tunnel, and as a result the displacements at infinity are unbounded. An example is presented for the case of a rigid buoyant tunnel in a half‐plane with gravity loading. Even though the tunnel does not deform, the buoyancy effect can be clearly seen in the contours of the displacements and stresses. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
5.
Northern peatlands are a large source of atmospheric methane (CH4) and both a source and a sink of atmospheric carbon dioxide (CO2). The rate and temporal variability in gas exchanges with peat soils is directly related to the spatial distribution of these free‐phase gases within the peat column. In this paper, we present results from surface and borehole ground‐penetrating radar surveys – constrained with direct soil and gas sampling – that compare the spatial distribution of gas accumulations in two raised bogs: one in Wales (UK), the other in Maine (USA). Although the two peatlands have similar average thickness, physical properties of the peat matrix differ, particularly in terms of peat type and degree of humification. We hypothesize that these variations in physical properties are responsible for the differences in gas distribution between the two peatlands characterized by (1) gas content up to 10.8% associated with woody peat and presence of wood layers in Caribou Bog (Maine) and (2) a more homogenous distribution with gas content up to 5.7% at the surface (i.e. <0.5 m deep) in Cors Fochno (Wales). Our results highlight the variability in biogenic gas accumulation and distribution across peatlands and suggest that the nature of the peat matrix has a key role in defining how biogenic gas accumulates within and is released to the atmosphere from peat soils. © 2015 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   
6.
7.
Understanding, using, or eliminating three-dimensional (3-D) effects in electromagnetic methods of geophysics are critical requirements. Numerous achievements in 3-D modeling sometimes give the impression that they are widely available today in geophysical practice. This is not necessarily true. Existing 3-D modeling packages prove that we know how to perform 3-D modeling. However, the computer resources and costs involved make the practical application of 3-D EM modeling in geophysical applications very limited.A practical compromise, or even alternative, is represented by 2.5-D modeling characterized by the use of a 3-D source in a 2-D medium. This combination allows one to mathematically describe the related boundary value problem as a sequence of independent two-dimensional problems. The typical technique leading to such a split formulation is Fourier analysis. That is why the individual terms of a split solution are often referred to as harmonics.Although each independent problem is two-dimensional, the algorithmic implementation of finite differences or integral equations for the higher harmonics has some specific features not present in the classical 2-D cases. In this paper, a hybrid scheme consisting of a combination of the finite difference technique with the integral equation approach for transient fields is described. Evaluation of algorithm accuracy is presented and a transient logging technique application is considered. The algorithm is fast and easily implemented on a personal computer  相似文献   
8.
The Kreuznach Sandstone belongs to the youngest Rotliegend sediments in the Bad Kreuznach area, northeastern Nahe Syncline. Because of its large-scale crossbedding — the thickness of sets of cross-strata can exceed — it has been interpreted as a typical aeolian dune sandstone, and has been placed to the Upper Rotliegend/ Zechstein boundary. To find out the origin of the Kreuznach Sandstone, it was examined by various sedimentological methods: petrography, granulometry, bedding and frame of crossbedding, sedimentary structures, facies associations, and quartz grain morphoscopy by scanning electron microscope. Although most of the results do not permit a clear decision between aeolian and fluvial origin, there are some arguments speaking well for fluvial sedimentation of the Kreuznach Sandstone. The very large-scale crossbedding — which is uncommon for river sands — is the sedimentological projection of the tectonic rise of the Kreuznach Rhyolitic Massif. Between the latter and the alluvial fans at the southern edge of the Hunsrück uplift the floods of an (ephemeral ?) stream coming from E/SE were narrowed. Thus water depth, stream velocity and concentration of sands grew rapidly so that megaripples, dunes and giant ripples could be built up. In the East before and in the West behind this narrow pass (as to stream direction) the stream spread out over a large plain, as a system of braided channels. Sand- and mudstones with laminated and small-scale ripple bedding were deposited there instead of the Kreuznach Sandstone.  相似文献   
9.
We summarize observations made by various researchers regarding the discharge potential, vertically integrated flows, and the Dupuit-Forchheimer approximation. If a regional flow model is formulated in terms of the discharge potential and the boundary conditions can be written in terms of the discharge potential and the boundary discharges, then the discharges are correct throughout the model domain, without embracing any additional simplifying assumptions.  相似文献   
10.
Entrapped gas bubbles in peat can alter the buoyancy, storativity, void ratio and expansion/contraction properties of the peat. Moreover, when gas bubbles block water‐conducting pores they can significantly reduce saturated hydraulic conductivity and create zones of over‐pressuring, perhaps leading to an alteration in the magnitude and direction of groundwater flow and solute transport. Some previous researches have demonstrated that these zones of over‐pressuring are not observed by the measurements of pore‐water pressures using open‐pipe piezometers in peat; rather, they are only observed with pressure transducers sealed in the peat. In has been hypothesized that open‐pipe piezometers vent entrapped CH4 to the atmosphere and thereby do not permit the natural development of zones of entrapped gas. Here we present findings of the study to investigate whether piezometers vent subsurface CH4 to the atmosphere and whether the presence of piezometers alters the subsurface concentration of dissolved CH4. We measured the flux of methane venting from the piezometers and also determined changes in pore‐water CH4 concentration at a rich fen in southern Ontario and a poor fen in southern Quebec, in the summer of 2004. Seasonally averaged CH4 flux from piezometers was 1450 and 37·8‐mg CH4 m?2 d?1 at the southern Ontario site and Quebec site, respectively. The flux at the Ontario site was two orders of magnitude greater than the diffusive flux at the site. CH4 pore‐water concentrations were significantly lower in open piezometers than in water taken from sealed samplers at both the Ontario and Quebec sites. The flux of CH4 from piezometers decreased throughout the season suggesting that CH4 venting through the piezometer exceeded the rate of methanogenesis in the peat. Consequently we conclude that piezometers may alter the gas dynamics of some peatlands. We suggest that less‐invasive techniques (e.g. buried pressure transducers, tracer experiments) are needed for the accurate measurement of pore‐water pressures and hydraulic conductivity in peatlands with a large entrapped gas component. Furthermore, we argue that caution must be made in interpreting results from previous peatland hydrology studies that use these traditional methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号