首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
地球物理   3篇
海洋学   1篇
  2022年   1篇
  2019年   1篇
  2012年   1篇
  2009年   1篇
排序方式: 共有4条查询结果,搜索用时 125 毫秒
1
1.
A wavelet energy method is presented to search the critical incidence of earthquake excitation in a multi-dimensional seismic response of offshore platforms. The total effective energy and the instantaneous effective energy input rate of an earthquake can be obtained by wavelet transformation to predict the critical incidence of the earthquake and then the maximum dynamic response of the platform can be calculated. The critical incidence is determined using this method for an actual platform and a group of single degree-of-freedom systems. Numerical results show that the application of wavelet transform in a multi-dimensional seismic response of structures is convenient and reliable.  相似文献   
2.
基于多道卷积信号盲分离的多次波自适应相减方法   总被引:1,自引:0,他引:1       下载免费PDF全文
本文将多次波自适应相减问题表示为一个多道卷积信号的盲分离问题.利用2D卷积核来表示预测多次波和实际多次波之间的差异,并采用分离出的一次波信号的非高斯性最大化作为优化目标,我们提出一种基于多道卷积信号盲分离的多次波自适应相减算法.为了求解上述非线性优化问题,所提方法将其转化为一个迭代线性优化问题,采用迭代最小二乘方法加以实现.由于采用了多道卷积信号盲分离模型,所提方法能够适应预测和真实多次波之间在时间及空间上的变化.通过对简单模型数据、Pluto数据和实际数据进行处理,验证了所提算法的有效性.  相似文献   
3.
Forward modeling is of critical importance for inversion analysis of surface wave methods to obtain shear-wave velocity (VS) profiles of soil sites. The dynamic stiffness matrix (DSM) method can provide forward modeling of Rayleigh surface waves to simulate complex wave propagation in layered soil sites. However, contamination from body waves and interference of multiple Rayleigh wave modes can reduce the accuracy of theoretical dispersion curves, especially at irregular soil sites with embedded low-velocity or high-velocity layers. An analytical method is developed herein to combine the techniques of the multichannel analysis of surface waves method with the DSM method to improve the accuracy of the theoretical dispersion analysis for soil sites. The proposed method implements multichannel analysis of the analytical displacement responses to capture dominant dispersion trends. Comparison of the results obtained with the new method against those from the transfer matrix method and the literature indicates that the new method can (1) effectively minimize the effects of contamination caused by body waves and interference from several Rayleigh wave modes, and (2) generate accurate dominant dispersion trends for soil sites with various stiffness profiles, especially for the high-frequency dispersion characteristics of the profiles with embedded low-velocity layers.  相似文献   
4.
Cable-membrane structures have small rigidity and are highly sensitive to wind. Structural health monitoring is necessary to ensure the serviceability and safety of the structure. In this research, the design method of a structural health monitoring system is using the characteristics of a cable-membrane structure. Taking the Yueyang Sanhe Airport Terminal as an example, a finite element model is established to determine the critical structural components. Next, the engineering requirements and the framework of the monitoring system are studied based on the results of numerical analysis. The specific implementation of the structural health monitoring is then carried out, which includes sensor selection, installation and wiring. The proposed framework is successfully applied to the monitoring system for the Yueyang Airport terminal building, and the synchronous acquisition of fiber Bragg grating and acceleration sensor signals is implemented in an innovative way. The successful implementation and operation of structural health monitoring will help to guarantee the safety of the cablemembrane structure during its service life.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号