首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   1篇
地质学   1篇
自然地理   1篇
  2009年   1篇
  2008年   1篇
  2000年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The 2004 Indian Ocean tsunami devastated the coastal areas along the Andaman western coast of Thailand and left unique physical evidence of its impact, including the erosional landforms of the pre-tsunami topography. Here we show the results from monitoring the natural recovery of beach areas at Khuk Khak and Bang Niang tidal channels of Khao Lak area, Phang-nga, Thailand. A series of satellite images before and after the tsunami event was employed for calculating the beach area and locating the position of the changed shoreline. Field surveys to follow-up the development of the post-tsunami beach area were conducted from 2005 to 2007 and the yearly beach profile was measured in 2006. As a result, the scoured beach areas where the tidal channel inlets were located underwent continuous recovery. The return of post-tsunami sediments within the beach zone was either achieved by normal wind and wave processes or during the storm surges in the rainy season. Post-2004 beach sediments were derived mainly from near offshore sources. The present situation of the beach zone has almost completed reversion back to the equilibrium stage and this has occurred within 2 years after the tsunami event. We suggest these results provide a better understanding of the geomorphological process involved in beach recovery after severe erosion such as by tsunami events.  相似文献   
2.
Geologic mapping and subsurface lithostratigraphic investigations were carried out in the Khao Pun area (4 km2), central Thailand. More than 250 hand specimens, 70 rock slabs, and 70 thin sections were studied in conjunction with geochemical data in order to elucidate paleoenvironments and tectonic setting of the Permian marine sedimentary sequences. This sedimentary succession (2485 m thick) was re‐accessed and re‐grouped into three lithostratigraphic units, namely, in ascending order, the Phu Phe, Khao Sung and Khao Pun Formations. The Lower to lower Upper Permian sedimentary facies indicated the transgressive/regressive succession of shelf sea/platform environment to pelagic or abyssal environment below the carbonate compensation depth. The sedimentological and paleontological aspects, together with petrochemical and lithological points of view, reveal that the oldest unit might indicate an Early Permian sheltered shallow or lagoonal environment. Then the depositional basin became deeper, as suggested by the prolonged occurrence of bedded chert‐limestone intercalation with the local exposure of shallower carbonate build‐up. Following this, the depositional environment changed to pelagic deposition, as indicated by laminated radiolarian (e.g. Follicucullus sp.) cherts. This cryptic evidence might indicate the abyssal environment during middle Middle to early Late Permian; whereas, previous studies advocated shelf‐facies environments. Following this, the depositional condition might be a major regression on the microcontinent close to Indochina, from the minor transgressive/regressive cycles that developed within a skeletal barrier, and through the lagoon with limited circulational and anaerobic conditions, on to the tidal flat to the sheltered lagoon without effective land‐derived sediments.  相似文献   
3.
The 2004 Indian Ocean tsunami deposited a sheet of sand with surficial bedforms at the Andaman coast of Thailand. Here we show the recognition of bedforms and the key internal sedimentary structures as criteria of the tsunami supercritical flow condition. The presence of well‐preserved capping bedforms implied a dominant tsunami inflow. Sets of internal sedimentary structures including parallel lamination, seaward and landward inclined‐laminations, and downstream dipping laminae indicated antidune structures that were generated by a supercritical flow current in a depositional stage during the inflow. A set of seaward dipping cross‐laminations containing sand with mud drape on the surface of one depositional layer are a unique indication of an outflow structure. A majority of deposits show normal grading, but in some areas, localized reverse grading was also observed. The recognition of these capping bedforms and determination of the internal sedimentary structures provides new key criteria to help derive a better understanding of tsunami flow conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号