首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
地球物理   1篇
地质学   1篇
海洋学   1篇
自然地理   3篇
  2021年   1篇
  2018年   1篇
  2010年   1篇
  2008年   1篇
  2005年   1篇
  1997年   1篇
排序方式: 共有6条查询结果,搜索用时 109 毫秒
1
1.
Dissolved organic matter(DOM) is an important component of ice cores but is currently poorly characterized. DOM from one Holocene sample(HS, aged at 1600–4500 B.P.) and one Last Glacial Maximum sample(LS, aged at 21000–25000 B.P.) from the North Greenland Eemian Ice Drilling(NEEM) ice core were analyzed by ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR-MS). CHO compounds contributed 50% of the compounds identified in negative-ionization mode in these two samples, with significant contributions from organic N, S, and P compounds, likely suggesting that marine DOM was an important source in these samples. Overall, the chemical compositions are similar between these two samples, suggesting their consistent DOM sources. However, subtle differences in the DOM between these two samples are apparent and could indicate differences in source strength or chemistry occurring through both pre-and post-depositional processes. For example, higher relative amounts of condensed carbon compounds in the HS DOM(5%), compared to the LS DOM(2%), suggest potentially important contributions from terrestrial sources. Greater incorporation of P in the observed DOM in the LS DOM(22%), compared to the HS DOM(13%), indicate more active microbiological processes that likely contribute to phosphorus incorporation into the DOM pool. Although these two samples present only a preliminary analysis of DOM in glacial/interglacial periods, the data indicate a need to expand the analysis into a broader range of ice-core samples, geographical locations, and glacial/interglacial periods.  相似文献   
2.
To look for gas hydrate, 22 multi-channel and 3 single-channel seismic lines on the East China Sea (ECS) shelf slope and at the bottom of the Okinawa Trough were examined. It was found that there was indeed bottom simulating reflector (BSR) occurrence, but it is very rare. Besides several BSRs, a gas seepage was also found. As shown by the data, both the BSR and gas seepage are all related with local geological structures, such as mud diapir, anticline, and fault-controlled graben-like structure. However, similar structural "anomalies" are quite common in the tectonically very active Okinawa Trough region, but very few of them have developed BSR or gas seepage. The article points out that the main reason is probably the low concentration of organic carbon of the sediment in this area. It was speculated that the rare occurrence of gas hydrates in this region is governed by structure-controlled fluid flow. Numerous faults and fractures form a network of high-permeability channels in the sediment and highly fractured igneous basement to allow fluid circulation and ventilation. Fluid flow in this tectonic environment is driven primarily by thermal buoyancy and takes place on a wide range of spatial scales. The fluid flow may play two roles to facilitate hydrate formation:to help gather enough methane into a small area and to modulate the thermal regime.  相似文献   
3.
Geomagnetism and Aeronomy - The total electron content (TEC) data obtained from the ground-based GPS receiver stations of the Nigerian GNSS network of stations (NIGNET) have been used in this study...  相似文献   
4.
5.
6.
Gas hydrates affect the bulk physical properties of marine sediments, in particular, elastic parameters. Shear modulus is an important parameter for estimating the distribution of hydrates in the marine sediments. However, S-wave information is difficult to recover without proper datasets. Seafloor compliance, the transfer function between pressure induced by surface gravity waves and the associated seafloor deformation, is one of few techniques to study shear modulus in the marine sediments. The coherence between recorded time series of displacement and pressure provides a measure of the quality of the calculated transfer function, the seafloor compliance. Thus, it is important to understand how to collect high coherence datasets. Here we conducted a 10-month pilot experiment using broadband seismic sensors and differential pressure gauges. We found that data collected in shallow water depth and during rough seas gave high coherence. This study is the first time long-term data sets have been employed to investigate seafloor compliance data quality and its dependence on sea state. These results will help designing future large-scale compliance experiments to study anomalously high shear moduli associated with the presence of gas hydrate or cold vents, or alternatively anomalously low shear moduli, associated with partial melt and magma chamber.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号