首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
地球物理   2篇
地质学   7篇
自然地理   1篇
  2017年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2000年   1篇
排序方式: 共有10条查询结果,搜索用时 17 毫秒
1
1.
2.
The northern segment of the Chelungpu Fault shows an unusually large co-seismic displacement from the event of the Mw 7.6 Chi-Chi earthquake in western Taiwan. Part of the northern segment near the Fengyuan City provides an excellent opportunity for characterizing active thrust-related structures due to a dense geodetic-benchmark network. We reproduced co-seismic deformation patterns of a small segment of this Chelungpu Fault using 924 geodetic benchmarks. According to the estimated displacement vectors, we identified secondary deformations, such as local rigid-block rotation and significant shortening within the hanging wall. The data set also allows us to determine accurately a 3D model of the thrust fault geometry in the shallow subsurface by assuming simple relations between the fault slip, and the horizontal and vertical displacements at the surface. The predicted thrust geometry is in good agreement with borehole data derived from two drilling sites close to the study area. The successful prediction supports our assumptions of rigid displacement and control of displacement in the hanging wall by the fault geometry being useful first approximations.  相似文献   
3.
The Jiufengershan rock and soil avalanche is one of the largest landslides triggered by the Chi-Chi earthquake Taiwan 1999. The landslide destabilized the western limb of the Taanshan syncline along a weak stratigraphic layer. It involved a flatiron remnant, which was almost entirely mobilized during the earthquake. The avalanche was slowed down by NS trending ridges located downstream along the Jiutsaihu creek. The landslide affected a 60 m thick and 1.5 km long sedimentary pile composed of shales and sandstones, which dip 22°SE toward a transverse valley. The triggering mechanism and the sliding process were analyzed by means of geological and morphological data from aerial photographs and observed in the field. A high-resolution airborne Light Detection and Ranging (LiDAR) image taken 2.5 years after the landslide allows the identification of morphological structures along the sliding surface and the landslide accumulation. The sliding surface shows several deformation structures such as fault scarps and folds. These structures are interpreted in terms of basal shear stresses created during the avalanche. Three major joint sets were identified at the sliding surface. The isopach map of the landslide was calculated from the comparison between elevation models before and after the earthquake. The coseismic volume of mobilized material and landslide deposit data are 42 × 106 m3 and 50 × 106 m3, respectively. The geometry of the landslide accumulation in the field has an irregular star shape. The morphology of the deposit area shows a sequence of smooth reliefs and depressions that contrast with the neighboring ridges.  相似文献   
4.
Data sets of collapsed earthquake locations, earthquake focal mechanisms, GPS velocities and geologic data are integrated to constrain the geometry and kinematics of a crustal block within the accreted continental margin rocks of Taiwan's northeastern Central Range. This block is laterally extruding and exhuming towards the north-northeast. The block is bound on the west-southwest by the previously recognized Sanyi–Puli seismic zone and on the east by a vertical seismic structure that projects to the eastern mountain front of the Central Range. Focal mechanisms from the Broadband Array of Taiwan Seismicity (BATS) catalog consistently show west-side-up reverse displacements for this fault zone. A second vertical structure is recognized beneath the Slate Belt–Metamorphic Belt boundary as a post-Chi-Chi relaxation oblique normal fault. BATS focal mechanisms show east-side-up, normal displacements with a minor left-lateral component. The vertical and lateral extrusion of this crustal block may be driven by the current collision between the Philippine Sea Plate and the Puli basement high indenter on the Eurasian Plate and/or trench rollback along the Ryukyu subduction zone. In addition, the vertical extent of the two shear zones suggests that a basal décollement below the eastern Central Range is deeper than previously proposed and may extend below the brittle–ductile transition.  相似文献   
5.
The 1999 Chi–Chi earthquake triggered the catastrophic Tsaoling landslide in central Taiwan. We mapped the landslide area and estimated the landslide volume, using a high-resolution digital elevation model from airborne LiDAR (Light Detection And Ranging), aerial photographs and topographic maps. The comparison between scar and deposit volumes, about 0.126 km3 and 0.150 km3 respectively, suggests a coseismic volume increase of 19% due to decompaction during landsliding. In July 2003, the scar and deposit volumes were about 0.125 km3 and 0.110 km3 respectively. These estimates suggest that 4 years after the event, the volume of landslide debris removed by river erosion was nearly 0.040 km3. These determinations are confirmed by direct comparison between the most accurate topographic models of the post-landslide period, indicating a very high erosion rate at the local scale (0.01 km3/year) for the deposit area of the landslide. Such a large value highlights the importance of landslide processes for erosion and long-term denudation in the Taiwan mountain belt.  相似文献   
6.
The 1999 Chi-Chi earthquake triggered the catastrophic Tsaoling landslide in central Taiwan. We mapped the landslide area and estimated the landslide volume, using high-resolution digital elevation model from airborne LiDAR (Light Detection and Ranging), satellite images, aerial photographs and topographic maps. The comparison between cut and fill volumes, about 0.126 and 0.150 km3, respectively, suggests a volume increase of 19% due to decompaction during landsliding. In April 2002, the cut and fill volumes were about 0.137 and 0.116 km3, respectively. These estimates suggest that 2.5 years after the event, the volume of landslide debris removed by river erosion was nearly 0.045 km3. Such a large value highlights the importance of landslide processes for erosion and long-term denudation in the Taiwan mountain belt. To cite this article: R.-F. Chen et al., C. R. Geoscience 337 (2005).  相似文献   
7.
2011年5月26日北京上空TeSL与Es、大气风场的同时观测   总被引:1,自引:0,他引:1       下载免费PDF全文
本文报道了北京延庆(116.0°E,40.5°N)钠荧光激光雷达在2011年5月26日夜间观测到的一例低热层钠层(lower thermospheric-enhanced sodium layer,TeSL)事例,从数据采集开始到观测结束,该低热层钠层持续存在且不断增强,峰值密度从250 cm-3增加至1500 cm-3,峰值高度却从111 km逐渐下降到100 km.同一时间相距28 km的测高仪也观测到了出现在106~117 km的Es层,平均强度4.5 MHz;对流星雷达设备观测到的75~100 km的纬向风风速进行拟合,得到100~125 km的风速,风剪切节点从122 km下降到108 km.Es层和纬向风剪切节点的演化趋势与TeSL事件呈现出极好的相关性.我们计算了离子垂直速度及辐射复合反应的生成率,对钠原子的出现高度和密度做出解释,推测风剪切汇聚的Na+与Es层中的电子中和,是形成当日TeSL的主要机制.  相似文献   
8.
Determinations of the absolute age of cleavage formation can provide fundamental information about the evolution of orogenic belts. However, when applied to cleavages in slates and phyllites, conventional dating methods are complicated by problems related to mineral separation and the presence of multiple cleavage generations. In situ high-spatial-resolution 40Ar/39Ar laser microprobe geochronology and microstructural observations indicate that the age of cleavage formation in slates and phyllites can be constrained by analysing zones of tightly packed cleavage domains. Three regionally developed cleavages (S2, S3, and S4) are present in the northern Taconic Allochthon of Vermont and New York. Representative samples were studied from a variety of localities where these cleavages, which are defined by white micas, are well developed. In the suite of samples, only S3 and S4 are expressed as domains that are sufficiently wide and spatially isolated in thin section to permit quantitative 40Ar/39Ar geochronology. Mean 40Ar/39Ar laser microprobe ages for these domains are 370.7 ± 1.0 Myr for S3 and 345.5 ± 1.7 Myr for S4. Because estimates of the Ar closure temperature for white micas are substantially higher than the inferred growth temperatures of the micas defining S3 and S4, these values are interpreted as periods since cleavage formation. This interpretation is consistent with independent geochronological constraints on the age of the Acadian orogeny in the region.  相似文献   
9.
Slope failure is a widely observed phenomenon in the mountainous areas in Taiwan due to rainy climatic and fragile geological conditions. Landslides easily occur after intense rainfall, especially from typhoons, and, accordingly, cause a great loss of human life and property. At the northern end of the Western Foothill belt in northern Taiwan, Huafan University is founded on a dip-slope about 20° toward the southwest composed of early Miocene alternations of sandstone and shale. Data from continuous monitoring using inclinometers and groundwater gauges reveal that 6–10 mm/month of slope creeping occurs, and a potential sliding surface is then detected about 10–40 m beneath the slope surface. To understand the potential runout process of the dip-slope failure at the campus, particle flow code 3D models based on a discrete element method are applied in this study. Results of the simulation reveal a critical value of the friction coefficient to be 0.13 and that more than 90% of the campus buildings will slide down in 100 s when the friction coefficient is reduced to half the critical value. The weakening of the shear zone due to the rise of groundwater during rainstorms is assumed to be the main factor. Some suggestions for preventing landslide disasters are to construct catchpits to drain runoff and lower the groundwater table and to install a sufficient number of ground anchors and retaining walls to stabilize the slope.  相似文献   
10.
In order to understand the kinematics which likely facilitated the speedy rupturing process of the 1999 Mw 7.6 Taiwan Chi-Chi earthquake, we examined exposed rocks in the Taiwan Slate belt, where the pressure and temperature conditions most resembled the hypocentre of the Chi-Chi earthquake, i.e. sub-greenschist facies. Field observations and composition analyses of the silicified vein-rich zones beneath the duplex structure suggest that impermeable slate layers may serve as cap rocks for confining deep-seated fluids. These fluids most likely come from the Taiwan metamorphic complex at deeper depths by the dehydration and decarbonation reactions (or partial melting). In addition, the gouge zone of a link fault above the detachment also indicates the presence of overpressured fluids during faulting. It is probable that episodic leakage of the confined fluid reservoirs may provide essential fluids for fault lubrication during earthquake ruptures.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号