首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
大气科学   6篇
地球物理   12篇
地质学   10篇
海洋学   2篇
自然地理   3篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2002年   3篇
  1993年   1篇
  1978年   1篇
排序方式: 共有33条查询结果,搜索用时 78 毫秒
1.
Investigations of Lateglacial to Early Holocene lake sediments from the Nahe palaeolake (northern Germany) provided a high-resolution palynological record. To increase the temporal resolution of the record a targeted search for cryptotephra was carried out on the basis of pollen stratigraphy. Three cryptotephra horizons were detected and geochemically identified as G10ka series tephra (a Saksunarvatn Ash), Vedde Ash and Laacher See Tephra. Here we present the first geochemically confirmed finding of the ash from the Laacher See Eruption in Schleswig-Holstein—extending the so far detected fallout fan of the eruption further to the north-west. These finds enable direct stratigraphical correlations and underline the potential of the site for further investigations.  相似文献   
2.
Zusammenfassung In den14C-Altern der Saharawässer spiegelt sich die wechselnde Abfolge von Feucht- und Trockenphasen während des späten Pleistozäns und Holozäns wider. Außerdem zeigt sich ein West-Ost-Gefälle in ihrem D- und18O-Gehalt, das als Kontinentaleffekt im Grundwasser gedeutet wird. Dieser Kontinentaleffekt setzt voraus, daß das nordafrikanische Klimageschehen vergangener Feuchtphasen von der Westdrift bestimmt wurde, die regenbringende atlantische Luftmassen weit ins Saharainnere getrieben hat. Ein einfaches mathematisches Modell, das den Kontinentaleffekt durch eine Rayleigh-Kondensation beschreibt, ergibt die beste Anpassung an die Meßwerte, wenn für die Sahara (ähnlich wie heute in Europa) ein West-Ost-Gefälle in den Paläo-Winterniederschlagsmengen von –30% pro 1000 km angenommen wird. Unter der Annahme ehemaliger Winterniederschläge (Sept.-März) von 600 mm (entspricht Lissabon heute) für das Gebiet an der nordafrikanischen Atlantikküste ergibt diese Modellrechnung z. B. 250 mm für die Paläo-Winterniederschläge im Gebiet des Murzuk-Beckens.
The14C-age distribution of Saharian groundwaters shows the alternating sequence of humid and arid periods in the late Pleistocene and Holocene. The observed west-east decrease of the D- and18O-content of the Sahara waters is interpreted to be the Continental Effect in rain and groundwater. The paleoclimatic situation during ground-water formation therefore was controlled by the western drift carrying wet Atlantic air masses across the Sahara. The best fit of a simple Rayleigh condensation model of the continental effect to the experimental data is obtained with a west-east decrease of the Saharian paleo-winter precipitation of –30% per 1000 km (similar to the one in Europe today). With an annual winter precipitation rate (Sept.-March) of 600 mm (corresponding to the one of Lisboa today) for the Northafrican coastal area at the Atlantic Ocean a previous winter precipitation rate of 250 mm is obtained for the Murzuq Basin.

Résumé Une succession de périodes humides et arides à la fin du Pléistocène et à l'Holocène se réflète dans la distribution des âges14C d'eaux souterraines du Sahara. Les teneurs en D et18O diminuent d'Ouest en Est, ce qui est interprété comme un effet continental dans l'eau souterraine. Celui-ci signifie que la climatologie des phases pluviales passées, dans l'Afrique du Nord, était déterminée par des vents d'Ouest qui apportaient des masses d'air atlantique humide à l'intérieur du Sahara. Un modèle mathématique simple décrivant l'effet continental par une condensation du type Rayleigh, reproduit avec la meilleure conformité les valeurs expérimentales, pour autant qu'on admette que les pluies hivernales au Sahara diminuaient anciennement d'Ouest en Est de 30% par 1000 km (comme à présent en Europe). En supposant qu'autrefois la quantité de pluie hivernale, de septembre à mars à la côte atlantique de l'Afrique du Nord était de 600 mm (comme aujourd'hui à Lisbonne), on obtient à l'aide de ce modèle une précipitation hivernale ancienne de 250 mm dans le bassin du Mourzouk.

, 14C, . , 18O, , . , , , , . , Rayleigh, — , — — 30 % 1000 . , - , . . , 600 , — —, 250 .
  相似文献   
3.
Abstract

To advance understanding of hydroclimatological processes, this paper links spatiotemporal variability in gridded European precipitation and large-scale mean sea-level pressure (MSLP) time series (1957–2002) using monthly concurrent correlation. Strong negative (positive) correlation near Iceland and (the Azores) is apparent for precipitation in northwest Europe, confirming a positive North Atlantic Oscillation (NAO) association. An opposing pattern is found for southwest Europe, and the Mediterranean in winter. In the lee of mountains, MSLP correlation is lower reflecting reduced influence of westerlies on precipitation generation. Importantly, European precipitation is shown to be controlled by physically interpretable climate patterns that change in extent and position from month to month. In spring, MSLP–precipitation correlation patterns move and shrink, reaching a minimum in summer, before expanding in the autumn, and forming an NAO-like dipole in winter. These space–time shifts in correlation regions explain why fixed-point NAO indices have limited ability to resolve precipitation for some European locations and seasons.

Editor Z.W. Kundzewicz; Associate editor A. Montanari

Citation Lavers, D., Prudhomme, C., and Hannah, D.M., 2013. European precipitation connections with large-scale mean sea-level pressure (MSLP) fields. Hydrological Sciences Journal, 58 (2), 310–327.  相似文献   
4.
The first part of this paper demonstrated the existence of bias in GCM-derived precipitation series, downscaled using either a statistical technique (here the Statistical Downscaling Model) or dynamical method (here high resolution Regional Climate Model HadRM3) propagating to river flow estimated by a lumped hydrological model. This paper uses the same models and methods for a future time horizon (2080s) and analyses how significant these projected changes are compared to baseline natural variability in four British catchments. The UKCIP02 scenarios, which are widely used in the UK for climate change impact, are also considered. Results show that GCMs are the largest source of uncertainty in future flows. Uncertainties from downscaling techniques and emission scenarios are of similar magnitude, and generally smaller than GCM uncertainty. For catchments where hydrological modelling uncertainty is smaller than GCM variability for baseline flow, this uncertainty can be ignored for future projections, but might be significant otherwise. Predicted changes are not always significant compared to baseline variability, less than 50% of projections suggesting a significant change in monthly flow. Insignificant changes could occur due to climate variability alone and thus cannot be attributed to climate change, but are often ignored in climate change studies and could lead to misleading conclusions. Existing systematic bias in reproducing current climate does impact future projections and must, therefore, be considered when interpreting results. Changes in river flow variability, important for water management planning, can be easily assessed from simple resampling techniques applied to both baseline and future time horizons. Assessing future climate and its potential implication for river flows is a key challenge facing water resource planners. This two-part paper demonstrates that uncertainty due to hydrological and climate modelling must and can be accounted for to provide sound, scientifically-based advice to decision makers.  相似文献   
5.
Projections of runoff from global multi-model ensembles provide a valuable basis for the estimation of future hydrological extremes. However, projections suffer from uncertainty that originates from different error sources along the modeling chain. Hydrological impact studies have generally partitioned these error sources into global impact and global climate model (GIM and GCM, respectively) uncertainties, neglecting other sources, including scenarios and internal variability. Using a set of GIMs driven by GCMs under different representative concentration pathways (RCPs), this study aims to partition the uncertainty of future flows coming from GIMs, GCMs, RCPs, and internal variability over the CONterminous United States (CONUS). We focus on annual maximum, median, and minimum runoff, analyzed decadally over the twenty-first century. Results indicate that GCMs and GIMs are responsible for the largest fraction of uncertainty over most of the study area, followed by internal variability and to a smaller extent RCPs. To investigate the influence of the ensemble setup on uncertainty, in addition to the full ensemble, three ensemble configurations are studied using fewer GIMs (excluding least credible GIMs in runoff representation and GIMs accounting for vegetation and CO2 dynamics), and excluding intermediate RCPs. Overall, the use of fewer GIMs has a minor impact on uncertainty for low and medium flows, but a substantial impact for high flows. Regardless of the number of pathways considered, RCPs always play a very small role, suggesting that improvement of GCMs and GIMs and more informed ensemble selections can yield a reduction of projected uncertainties.  相似文献   
6.
In this study, we used data recorded by two consecutive passive broadband deployments on the Gulf of Aden northern margin, Dhofar region, Sultanate of Oman. The objective of these deployments is to map the young eastern Gulf of Aden passive continental margin crust and upper mantle structure and rheology. In this study, we use shear-wave splitting analysis to map lateral variations of upper mantle anisotropy beneath the study area. In this study, we found splitting magnitudes to vary between 0.33 and 1.0 s delay times, averaging about 0.6 s for a total of 17 stations from both deployment periods. Results show distinct abrupt lateral anisotropy variation along the study area. Three anisotropy zones are identified: a western zone dominated by NW–SE anisotropy orientations, an eastern zone dominated with NE–SW anisotropy orientations, and central zone with mixed anisotropy orientations similar to the east and west zones. We interpret these shorter wavelength anisotropy zones to possibly represent fossil lithospheric mantle anisotropy. We postulate that the central anisotropy zone may be representing a Proterozoic suture zone that separates two terranes to the east and west of it. The anisotropy zones west and east were being used indicative of different terranes with different upper mantle anisotropy signatures.  相似文献   
7.
The poleward flowing East Australian Current (EAC) is characterised by its separation from the coast, 100-200 nautical miles north of Sydney, to form the eastward flowing Tasman Front and a southward flowing eddy field. The separation zone greatly influences coastal ecosystems for the relatively narrow continental shelf (only 15-50 km wide), particularly between 32-34°S. In this region the continental shelf has a marked shift in the seasonal temperature-salinity relationship and elevated surface nitrate concentrations. This current parallels the portion of the coast where Australia’s population is concentrated and has a long history of scientific research. However, understanding of physical and biological processes driven by the EAC, particularly in linking circulation to ecosystems, is limited. In this special issue of 16 papers on the EAC, we examine the effects of climatic wind-stress forced ocean dynamics on EAC transport variability and coastal sea level, from ENSO to multi-decadal time scales; eddy formation and structure; fine scale connectivity and larval retention. Comparisons with the poleward-flowing Leeuwin Current on Australia’s west coast show differences in ecosystem productivity that can be attributed to the underlying physics in each region. On average there is double the chlorophyll a concentration on the east coast than the west. In comparison to the Leeuwin, the EAC may have less local retention of larvae and act as a partial barrier to onshore transport, which may also be related to the local spawning and early life history of small pelagic fish on each coast. Inter-annual variations in the EAC transport produce a detectable sea-level signal in Sydney Harbour, which could provide a useful fisheries index as does the Fremantle sea level and Leeuwin Current relationship. The EAC’s eddy structure and formation by the EAC are examined. A particular cold-core eddy is shown to have a “tilt” towards the coast, and that during a rotation the flow of particles may rise up to the euphotic zone and then down beneath. In a warm-core eddy, surface flooding is shown to produce a new shallower surface mixed layer and promote algal growth. An assessment of plankton data from 1938-1942 showed that the local, synoptic conditions had to be incorporated before any comparison with the present. There are useful relationships of water mass characteristics in the Tasman Sea and separation zone with larval fish diversity and abundance, as well as with long-line fisheries. These fisheries-pelagic habitat relationships are invaluable for fisheries management, as well as for climate change assessments.There is further need to examine the EAC influence on rainfall, storm activity, dust deposition, and on the movements by fish, sharks and whales. The Australian Integrated Marine Observing System (IMOS) has provided new infrastructure to determine the changing behaviour of the EAC and its bio-physical interaction with the coasts and estuaries. The forecasting and hindcasting capability developed under the Bluelink project has provided a new tool for data synthesis and dynamical analysis. The impact of a strengthening EAC and how it influences the livelihoods of over half the Australian population, from Brisbane to Sydney, Hobart and Melbourne, is just being realised.  相似文献   
8.
Ocean Dynamics - Identifying zones of stagnation and deposition of terrigenous matter or contaminants induced by human activity is a key issue in coastal areas. In this paper, circulation processes...  相似文献   
9.
This article aims to identify the large‐scale climate variables that yield significant statistical relationships with precipitation and discharge for a British river basin (Dyfi). Ranked correlation analysis was performed between gridded ERA‐40 atmospheric data and Dyfi precipitation and discharge for individual months. Precipitation and discharge demonstrate significant negative correlation with mean sea level pressure (MSLP). Strongest MSLP correlation areas move from north of Britain in winter to central Britain in summer; this shift is associated with a displacement of geopotential (Z) and zonal wind (U). Movement of significant correlation regions (not captured by the North Atlantic Oscillation Index) highlights the dynamic nature of precipitation and river flow generating weather systems throughout the year. Existence of strong significant correlation shows potential for exploiting large‐scale climate variables in forecasting precipitation and river flow in Britain. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号