首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Future climate projections and impact analyses are pivotal to evaluate the potential change in crop yield under climate change. Impact assessment of climate change is also essential to prepare and implement adaptation measures for farmers and policymakers. However, there are uncertainties associated with climate change impact assessment when combining crop models and climate models under different emission scenarios. This study quantifies the various sources of uncertainty associated with future climate change effects on wheat productivity at six representative sites covering dry and wet environments in Australia based on 12 soil types and 12 nitrogen application rates using one crop model driven by 28 global climate models (GCMs) under two representative concentration pathways (RCPs) at near future period 2021–2060 and far future period 2061–2100. We used the analysis of variance (ANOVA) to quantify the sources of uncertainty in wheat yield change. Our results indicated that GCM uncertainty largely dominated over RCPs, nitrogen rates, and soils for the projections of wheat yield at drier locations. However, at wetter sites, the largest share of uncertainty was nitrogen, followed by GCMs, soils, and RCPs. In addition, the soil types at two northern sites in the study area had greater effects on yield change uncertainty probably due to the interaction effect of seasonal rainfall and soil water storage capacity. We concluded that the relative contributions of different uncertainty sources are dependent on climatic location. Understanding the share of uncertainty in climate impact assessment is important for model choice and will provide a basis for producing more reliable impact assessment.  相似文献   

2.
Future climate projections from general circulation models (GCMs) predict an acceleration of the global hydrological cycle throughout the 21st century in response to human-induced rise in temperatures. However, projections of GCMs are too coarse in resolution to be used in local studies of climate change impacts. To cope with this problem, downscaling methods have been developed that transform climate projections into high resolution datasets to drive impact models such as rainfall-runoff models. Generally, the range of changes simulated by different GCMs is considered to be the major source of variability in the results of such studies. However, the cascade of uncertainty in runoff projections is further elongated by differences between impact models, especially where robust calibration is hampered by the scarcity of data. Here, we address the relative importance of these different sources of uncertainty in a poorly monitored headwater catchment of the Ecuadorian Andes. Therefore, we force 7 hydrological models with downscaled outputs of 8 GCMs driven by the A1B and A2 emission scenarios over the 21st century. Results indicate a likely increase in annual runoff by 2100 with a large variability between the different combinations of a climate model with a hydrological model. Differences between GCM projections introduce a gradually increasing relative uncertainty throughout the 21st century. Meanwhile, structural differences between applied hydrological models still contribute to a third of the total uncertainty in late 21st century runoff projections and differences between the two emission scenarios are marginal.  相似文献   

3.
Assessing future climate and its potential implications on river flows is a key challenge facing water resource planners. Sound, scientifically-based advice to decision makers also needs to incorporate information on the uncertainty in the results. Moreover, existing bias in the reproduction of the ‘current’ (or baseline) river flow regime is likely to transfer to the simulations of flow in future time horizons, and it is thus critical to undertake baseline flow assessment while undertaking future impacts studies. This paper investigates the three main sources of uncertainty surrounding climate change impact studies on river flows: uncertainty in GCMs, in downscaling techniques and in hydrological modelling. The study looked at four British catchments’ flow series simulated by a lumped conceptual rainfall–runoff model with observed and GCM-derived rainfall series representative of the baseline time horizon (1961–1990). A block-resample technique was used to assess climate variability, either from observed records (natural variability) or reproduced by GCMs. Variations in mean monthly flows due to hydrological model uncertainty from different model structures or model parameters were also evaluated. Three GCMs (HadCM3, CCGCM2, and CSIRO-mk2) and two downscaling techniques (SDSM and HadRM3) were considered. Results showed that for all four catchments, GCM uncertainty is generally larger than downscaling uncertainty, and both are consistently greater than uncertainty from hydrological modelling or natural variability. No GCM or downscaling technique was found to be significantly better or to have a systematic bias smaller than the others. This highlights the need to consider more than one GCM and downscaling technique in impact studies, and to assess the bias they introduce when modelling river flows.  相似文献   

4.
潮白河流域为北京主要供水源,其水资源量对北京用水保障至关重要,因此开展该流域在全球1.5℃和2.0℃升温下的径流预估研究具有现实意义。利用1961—2001年WATCH数据对SWAT水文模型进行率定和验证,在此基础上,应用第五次耦合模式比较计划(CMIP5)中5个全球气候模式在典型浓度路径(RCP4.5、RCP6.0和RCP8.5)下预估的全球1.5℃和2.0℃升温下的数据驱动SWAT模型,开展了潮白河流域气温、降水及径流量的变化预估研究,并量化评估由气候模式和RCPs导致的水文效应的不确定性。结果表明:(1) SWAT模型基本能较好地模拟潮白河流域的月径流特征,应用该模型进行气候变化对径流量的影响评估是可行的。(2)在全球1.5℃和2.0℃升温下,潮白河流域年平均温度较基准期(1976—2005年)分别增加1.5℃和2.2℃,年平均降水量也增加4.9%和7.0%。预估的年径流量在全球1.5℃升温下总体略有增加,盛夏和秋初的径流量占全年的比例也有所增加;在全球2.0℃升温下,年径流量增幅达30%以上,但夏季径流量占全年的比例明显减少。(3)在全球2.0℃升温下,潮白河流域极端丰水流量明显增加,洪涝发生风险增大。(4)未来气温、降水量和径流量的预估都存在一定的不确定性,在全球2.0℃升温下不确定性更大;相对而言,径流量的不确定性要远大于降水量的不确定性;无论是全球1.5℃升温下还是2.0℃升温下,预估不确定性主要来源于全球气候模式。  相似文献   

5.
This paper investigates the uncertainty in the impact of climate change on flood frequency in England, through the use of continuous simulation of river flows. Six different sources of uncertainty are discussed: future greenhouse gas emissions; Global Climate Model (GCM) structure; downscaling from GCMs (including Regional Climate Model structure); hydrological model structure; hydrological model parameters and the internal variability of the climate system (sampled by applying different GCM initial conditions). These sources of uncertainty are demonstrated (separately) for two example catchments in England, by propagation through to flood frequency impact. The results suggest that uncertainty from GCM structure is by far the largest source of uncertainty. However, this is due to the extremely large increases in winter rainfall predicted by one of the five GCMs used. Other sources of uncertainty become more significant if the results from this GCM are omitted, although uncertainty from sources relating to modelling of the future climate is generally still larger than that relating to emissions or hydrological modelling. It is also shown that understanding current and future natural variability is critical in assessing the importance of climate change impacts on hydrology.  相似文献   

6.
This study investigated the regime-dependent predictability using convective-scale ensemble forecasts initialized with different initial condition perturbations in the Yangtze and Huai River basin(YHRB) of East China. The scale-dependent error growth(ensemble variability) and associated impact on precipitation forecasts(precipitation uncertainties) were quantitatively explored for 13 warm-season convective events that were categorized in terms of strong forcing and weak forcing. The forecast error growth in the strong-forcing regime shows a stepwise increase with increasing spatial scale,while the error growth shows a larger temporal variability with an afternoon peak appearing at smaller scales under weak forcing. This leads to the dissimilarity of precipitation uncertainty and shows a strong correlation between error growth and precipitation across spatial scales. The lateral boundary condition errors exert a quasi-linear increase on error growth with time at the larger scale, suggesting that the large-scale flow could govern the magnitude of error growth and associated precipitation uncertainties, especially for the strong-forcing regime. Further comparisons between scale-based initial error sensitivity experiments show evident scale interaction including upscale transfer of small-scale errors and downscale cascade of larger-scale errors. Specifically, small-scale errors are found to be more sensitive in the weak-forcing regime than those under strong forcing. Meanwhile, larger-scale initial errors are responsible for the error growth after 4 h and produce the precipitation uncertainties at the meso-β-scale. Consequently, these results can be used to explain underdispersion issues in convective-scale ensemble forecasts and provide feedback for ensemble design over the YHRB.  相似文献   

7.
We have characterized the relative contributions to uncertainty in predictions of global warming amount by year 2100 in the C4MIP model ensemble ( Friedlingstein et al., 2006 ) due to both carbon cycle process uncertainty and uncertainty in the physical climate properties of the Earth system. We find carbon cycle uncertainty to be important. On average the spread in transient climate response is around 40% of that due to the more frequently debated uncertainties in equilibrium climate sensitivity and global heat capacity.
This result is derived by characterizing the influence of different parameters in a global climate-carbon cycle 'box' model that has been calibrated against the 11 General Circulation models (GCMs) and Earth system Models of Intermediate Complexity (EMICs) in the C4MIP ensemble; a collection of current state-of-the-art climate models that include an explicit representation of the global carbon cycle.  相似文献   

8.
This work focuses on the evaluation of different sources of uncertainty affecting regional climate simulations over South America at the seasonal scale, using the MM5 model. The simulations cover a 3-month period for the austral spring season. Several four-member ensembles were performed in order to quantify the uncertainty due to: the internal variability; the definition of the regional model domain; the choice of physical parameterizations and the selection of physical parameters within a particular cumulus scheme. The uncertainty was measured by means of the spread among individual members of each ensemble during the integration period. Results show that the internal variability, triggered by differences in the initial conditions, represents the lowest level of uncertainty for every variable analyzed. The geographic distribution of the spread among ensemble members depends on the variable: for precipitation and temperature the largest spread is found over tropical South America while for the mean sea level pressure the largest spread is located over the southeastern Atlantic Ocean, where large synoptic-scale activity occurs. Using nudging techniques to ingest the boundary conditions reduces dramatically the internal variability. The uncertainty due to the domain choice displays a similar spatial pattern compared with the internal variability, except for the mean sea level pressure field, though its magnitude is larger all over the model domain for every variable. The largest spread among ensemble members is found for the ensemble in which different combinations of physical parameterizations are selected. The perturbed physics ensemble produces a level of uncertainty slightly larger than the internal variability. This study suggests that no matter what the source of uncertainty is, the geographical distribution of the spread among members of the ensembles is invariant, particularly for precipitation and temperature.  相似文献   

9.
Uncertainties in the climate response to a doubling of atmospheric CO2 concentrations are quantified in a perturbed land surface parameter experiment. The ensemble of 108 members is constructed by systematically perturbing five poorly constrained land surface parameters of global climate model individually and in all possible combinations. The land surface parameters induce small uncertainties at global scale, substantial uncertainties at regional and seasonal scale and very large uncertainties in the tails of the distribution, the climate extremes. Climate sensitivity varies across the ensemble mainly due to the perturbation of the snow albedo parameterization, which controls the snow albedo feedback strength. The uncertainty range in the global response is small relative to perturbed physics experiments focusing on atmospheric parameters. However, land surface parameters are revealed to control the response not only of the mean but also of the variability of temperature. Major uncertainties are identified in the response of climate extremes to a doubling of CO2. During winter the response both of temperature mean and daily variability relates to fractional snow cover. Cold extremes over high latitudes warm disproportionately in ensemble members with strong snow albedo feedback and large snow cover reduction. Reduced snow cover leads to more winter warming and stronger variability decrease. As a result uncertainties in mean and variability response line up, with some members showing weak and others very strong warming of the cold tail of the distribution, depending on the snow albedo parametrization. The uncertainty across the ensemble regionally exceeds the CMIP3 multi-model range. Regarding summer hot extremes, the uncertainties are larger than for mean summer warming but smaller than in multi-model experiments. The summer precipitation response to a doubling of CO2 is not robust over many regions. Land surface parameter perturbations and natural variability alter the sign of the response even over subtropical regions.  相似文献   

10.
Climate scenarios for the Netherlands are constructed by combining information from global and regional climate models employing a simplified, conceptual framework of three sources (levels) of uncertainty impacting on predictions of the local climate. In this framework, the first level of uncertainty is determined by the global radiation balance, resulting in a range of the projected changes in the global mean temperature. On the regional (1,000–5,000 km) scale, the response of the atmospheric circulation determines the second important level of uncertainty. The third level of uncertainty, acting mainly on a local scale of 10 (and less) to 1,000 km, is related to the small-scale processes, like for example those acting in atmospheric convection, clouds and atmospheric meso-scale circulations—processes that play an important role in extreme events which are highly relevant for society. Global climate models (GCMs) are the main tools to quantify the first two levels of uncertainty, while high resolution regional climate models (RCMs) are more suitable to quantify the third level. Along these lines, results of an ensemble of RCMs, driven by only two GCM boundaries and therefore spanning only a rather narrow range in future climate predictions, are rescaled to obtain a broader uncertainty range. The rescaling is done by first disentangling the climate change response in the RCM simulations into a part related to the circulation, and a residual part which is related to the global temperature rise. Second, these responses are rescaled using the range of the predictions of global temperature change and circulation change from five GCMs. These GCMs have been selected on their ability to simulate the present-day circulation, in particular over Europe. For the seasonal means, the rescaled RCM results obey the range in the GCM ensemble using a high and low emission scenario. Thus, the rescaled RCM results are consistent with the GCM results for the means, while adding information on the small scales and the extremes. The method can be interpreted as a combined statistical–dynamical downscaling approach, with the statistical relations based on regional model output.  相似文献   

11.
Uncertainty in climate change projections: the role of internal variability   总被引:12,自引:7,他引:5  
Uncertainty in future climate change presents a key challenge for adaptation planning. In this study, uncertainty arising from internal climate variability is investigated using a new 40-member ensemble conducted with the National Center for Atmospheric Research Community Climate System Model Version 3 (CCSM3) under the SRES A1B greenhouse gas and ozone recovery forcing scenarios during 2000–2060. The contribution of intrinsic atmospheric variability to the total uncertainty is further examined using a 10,000-year control integration of the atmospheric model component of CCSM3 under fixed boundary conditions. The global climate response is characterized in terms of air temperature, precipitation, and sea level pressure during winter and summer. The dominant source of uncertainty in the simulated climate response at middle and high latitudes is internal atmospheric variability associated with the annular modes of circulation variability. Coupled ocean-atmosphere variability plays a dominant role in the tropics, with attendant effects at higher latitudes via atmospheric teleconnections. Uncertainties in the forced response are generally larger for sea level pressure than precipitation, and smallest for air temperature. Accordingly, forced changes in air temperature can be detected earlier and with fewer ensemble members than those in atmospheric circulation and precipitation. Implications of the results for detection and attribution of observed climate change and for multi-model climate assessments are discussed. Internal variability is estimated to account for at least half of the inter-model spread in projected climate trends during 2005–2060 in the CMIP3 multi-model ensemble.  相似文献   

12.
Present and future climatologies in the phase I CREMA experiment   总被引:1,自引:0,他引:1  
We provide an overall assessment of the surface air temperature and precipitation present day (1976–2005) and future (2070–2099) ensemble climatologies in the Phase I CREMA experiment. This consists of simulations performed with different configurations (physics schemes) of the ICTP regional model RegCM4 over five CORDEX domains (Africa, Mediterranean, Central America, South America, South Asia), driven by different combinations of three global climate models (GCMs) and two greenhouse gas (GHG) representative concentration pathways (RCP8.5 and RCP4.5). The biases (1976–2005) in the driving and nested model ensembles compared to observations show a high degree of spatial variability and, when comparing GCMs and RegCM4, similar magnitudes and more similarity for precipitation than for temperature. The large scale patterns of change (2070–2099 minus 1976–2005) are broadly consistent across the GCM and RegCM4 ensembles and with previous analyses of GCM projections, indicating that the GCMs selected in the CREMA experiment are representative of the more general behavior of current GCMs. The RegCM4, however, shows a lower climate sensitivity (reduced warming) than the driving GCMs, especially when using the CLM land surface scheme. While the broad patterns of precipitation change are consistent across the GCM and RegCM4 ensembles, greater differences are found at sub-regional scales over the various domains, evidently tied to the representation of local processes. This paper serves to provide a reference view of the behavior of the CREMA ensemble, while more detailed and process-based analysis of individual domains is left to companion papers of this special issue.  相似文献   

13.
Despite an increasing understanding of potential climate change impacts in Europe, the associated uncertainties remain a key challenge. In many impact studies, the assessment of uncertainties is underemphasised, or is not performed quantitatively. A key source of uncertainty is the variability of climate change projections across different regional climate models (RCMs) forced by different global circulation models (GCMs). This study builds upon an indicator-based NUTS-2 level assessment that quantified potential changes for three climate-related hazards: heat stress, river flood risk, and forest fire risk, based on five GCM/RCM combinations, and non-climatic factors. First, a sensitivity analysis is performed to determine the fractional contribution of each single input factor to the spatial variance of the hazard indicators, followed by an evaluation of uncertainties in terms of spread in hazard indicator values due to inter-model climate variability, with respect to (changes in) impacts for the period 2041–70. The results show that different GCM/RCM combinations lead to substantially varying impact indicators across all three hazards. Furthermore, a strong influence of inter-model variability on the spatial patterns of uncertainties is revealed. For instance, for river flood risk, uncertainties appear to be particularly high in the Mediterranean, whereas model agreement is higher for central Europe. The findings allow for a hazard-specific identification of areas with low vs. high model agreement (and thus confidence of projected impacts) within Europe, which is of key importance for decision makers when prioritising adaptation options.  相似文献   

14.
One of the main sources of uncertainty in estimating climate projections affected by global warming is the choice of the global climate model (GCM). The aim of this study is to evaluate the skill of GCMs from CMIP3 and CMIP5 databases in the north-east Atlantic Ocean region. It is well known that the seasonal and interannual variability of surface inland variables (e.g. precipitation and snow) and ocean variables (e.g. wave height and storm surge) are linked to the atmospheric circulation patterns. Thus, an automatic synoptic classification, based on weather types, has been used to assess whether GCMs are able to reproduce spatial patterns and climate variability. Three important factors have been analyzed: the skill of GCMs to reproduce the synoptic situations, the skill of GCMs to reproduce the historical inter-annual variability and the consistency of GCMs experiments during twenty-first century projections. The results of this analysis indicate that the most skilled GCMs in the study region are UKMO-HadGEM2, ECHAM5/MPI-OM and MIROC3.2(hires) for CMIP3 scenarios and ACCESS1.0, EC-EARTH, HadGEM2-CC, HadGEM2-ES and CMCC-CM for CMIP5 scenarios. These models are therefore recommended for the estimation of future regional multi-model projections of surface variables driven by the atmospheric circulation in the north-east Atlantic Ocean region.  相似文献   

15.
The analysis of climate change impact on the hydrology of high altitude glacierized catchments in the Himalayas is complex due to the high variability in climate, lack of data, large uncertainties in climate change projection and uncertainty about the response of glaciers. Therefore a high resolution combined cryospheric hydrological model was developed and calibrated that explicitly simulates glacier evolution and all major hydrological processes. The model was used to assess the future development of the glaciers and the runoff using an ensemble of downscaled climate model data in the Langtang catchment in Nepal. The analysis shows that both temperature and precipitation are projected to increase which results in a steady decline of the glacier area. The river flow is projected to increase significantly due to the increased precipitation and ice melt and the transition towards a rain river. Rain runoff and base flow will increase at the expense of glacier runoff. However, as the melt water peak coincides with the monsoon peak, no shifts in the hydrograph are expected.  相似文献   

16.
Based on integrated simulations of 26 global climate models provided by the Coupled Model Intercomparison Project(CMIP), this study predicts changes in temperature and precipitation across China in the 21 st century under different representative concentration pathways(RCPs), and analyzes uncertainties of the predictions using Taylor diagrams. Results show that increases of average annual temperature in China using three RCPs(RCP2.6, RCP4.5,RCP8.5) are 1.87 ℃, 2.88 ℃ and 5.51 ℃, respectively. Increases in average annual precipitation are 0.124, 0.214, and 0.323 mm/day, respectively. The increased temperature and precipitation in the 21 st century are mainly contributed by the Tibetan Plateau and Northeast China. Uncertainty analysis shows that most CMIP5 models could predict temperature well, but had a relatively large deviation in predicting precipitation in China in the 21 st century. Deviation analysis shows that more than 80% of the area of China had stronger signals than noise for temperature prediction;however, the area proportion that had meaningful signals for precipitation prediction was less than 20%. Thus, the multi-model ensemble was more reliable in predicting temperature than precipitation because of large uncertainties of precipitation.  相似文献   

17.
The influence of changes in winds over the Amundsen Sea has been shown to be a potentially key mechanism in explaining rapid loss of ice from major glaciers in West Antarctica, which is having a significant impact on global sea level. Here, Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model data are used to assess twenty-first century projections in westerly winds over the Amundsen Sea (U AS ). The importance of model uncertainty and internal climate variability in RCP4.5 and RCP8.5 scenario projections are quantified and potential sources of model uncertainty are considered. For the decade 2090–2099 the CMIP5 models show an ensemble mean twenty-first century response in annual mean U AS of 0.3 and 0.7 m s?1 following the RCP4.5 and RCP8.5 scenarios respectively. However, as a consequence of large internal climate variability over the Amundsen Sea, it takes until around 2030 (2065) for the RCP8.5 response to exceed one (two) standard deviation(s) of decadal internal variability. In all scenarios and seasons the model uncertainty is large. However the present-day climatological zonal wind bias over the whole South Pacific, which is important for tropical teleconnections, is strongly related to inter-model differences in projected change in U AS (more skilful models show larger U AS increases). This relationship is significant in winter (r = ?0.56) and spring (r = ?0.65), when the influence of the tropics on the Amundsen Sea region is known to be important. Horizontal grid spacing and present day sea ice extent are not significant sources of inter-model spread.  相似文献   

18.
Ocean dynamics play a key role in the climate system, by redistributing heat and freshwater. The uncertainty of how these processes are represented in climate models, and how this uncertainty affects future climate projections can be investigated using perturbed physics ensembles of global circulation models (GCMs). Techniques such as flux adjustments should be avoided since they can impact the sensitivity of the ensemble to the imposed forcing. In this study a method for developing an coupled ensemble with a GCM that does not use flux adjustment is presented. The ensemble is constrained by using information from a prior ensemble with a mixed layer ocean coupled to an atmosphere GCM, to reduce drifts in the coupled ensemble. Constraints on parameter perturbations are derived by using observational constraints on surface temperature, and top of the atmosphere radiative fluxes. As an example of such an ensemble developed with this methodology, uncertainty in response of the meridional overturning circulation (MOC) to increased CO2 concentrations is investigated. The ensemble mean MOC strength is 17.1?Sv and decreases by 2.1?Sv when greenhouse gas concentrations are doubled. No rapid changes or shutdown of the MOC are seen in any of the ensemble members. There is a strong negative relationship between global mean temperature and MOC strength across the ensemble which is not seen in a multimodel ensemble. A positive relationship between climate sensitivity and the decrease of MOC strength is also seen.  相似文献   

19.
As the incorporation of probabilistic climate change information into UK water resource management gathers apace, understanding the relative scales of the uncertainty sources in projections of future water shortage metrics is necessary for the resultant information to be understood and used effectively. Utilising modified UKCP09 weather generator data and a multi-model approach, this paper represents a first attempt at extending an uncertainty assessment of future stream flows under forced climates to consider metrics of water shortage based on the triggering of reservoir control curves. It is found that the perturbed physics ensemble uncertainty, which describes climate model parameter error uncertainty, is the cause of a far greater proportion of both the overall flow and water shortage per year probability uncertainty than that caused by SRES emissions scenario choice in the 2080s. The methodology for producing metrics of future water shortage risk from UKCP09 weather generator information described here acts as the basis of a robustness analysis of the North Staffordshire WRZ to climate change, which provides an alternative approach for making decisions despite large uncertainties, which will follow.  相似文献   

20.
Anthropogenic climate forcing will cause the global mean sea level to rise over the 21st century.However,regional sea level is expected to vary across ocean basins,superimposed by the influence of natural internal climate variability.Here,we address the detection of dynamic sea level(DSL)changes by combining the perspectives of a single and a multimodel ensemble approach(the 50-member CanESM5 and a 27-model ensemble,respectively,all retrieved from the CMIP6 archive),under three CMIP6 projected scenarios:SSP1-2.6,SSP3-7.0 and SSP5-8.5.The ensemble analysis takes into account four key metrics:signal(S),noise(N),S/N ratio,and time of emergence(ToE).The results from both sets of ensembles agree in the fact that regions with higher S/N(associated with smaller uncertainties)also reflect earlier ToEs.The DSL signal is projected to emerge in the Southern Ocean,Southeast Pacific,Northwest Atlantic,and the Arctic.Results common for both sets of ensemble simulations show that while S progressively increases with increased projected emissions,N,in turn,does not vary substantially among the SSPs,suggesting that uncertainty arising from internal climate variability has little dependence on changes in the magnitude of external forcing.Projected changes are greater and quite similar for the scenarios SSP3-7.0 and SSP5-8.5 and considerably smaller for the SSP1-2.6,highlighting the importance of public policies towards lower emission scenarios and of keeping emissions below a certain threshold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号