首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   3篇
地质学   5篇
  2022年   1篇
  2020年   2篇
  2014年   1篇
  2009年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
水热法从钾长石中提取钾、硅、铝的实验研究   总被引:1,自引:0,他引:1  
通过水热化学反应将钾长石中的钾、硅和铝转变为可溶性组份,具有十分重要的应用价值.本文用单因素实验考察了不同水热反应实验条件对钾长石中钾、硅、铝溶出率的影响,并根据溶出率结果优化了反应条件.单因素实验结果表明:(1)在190℃条件下,随生石灰加入量的逐渐增加,产物中各元素的溶出率有一个先增加后减少的趋势.(2)在相同的生石灰、钾长石比例下,当反应16 h后,产物中各元素的溶出率随反应时间的延长趋于平缓.(3)随反应温度的逐渐增加,产物中各元素的溶出率逐渐增加.  相似文献   
2.
钾长石在碱性流体蚀变过程中会形成层状铝硅酸盐等矿物,前人对其反应机制和反应产物进行了研究,但缺乏微观尺度尤其是纳米尺度的探讨。因此,作者对钾长石在极端碱性条件下(190℃,24h,初始p H=12.4)的蚀变机制及其蚀变产物层状硅酸盐托贝莫来石的显微结构开展了纳米尺度的研究。X射线粉末衍射、扫描电子显微镜、能量色散光谱等观测结果显示,钾长石在碱性条件下水热蚀变所得到的产物主要为托贝莫来石、水钙铝榴石和方解石。高分辨率的透射电镜结果表明,在钾长石与次生矿物相的界面形成了纳米级的多孔非晶质层,且在空间上表现出结构的不连续性。界面溶解-再沉淀(CIDR)机制很好地解释了钾长石与次生矿物相界面的空间不连续性和非晶质层的形成。对蚀变产物中纤维状的托贝莫来石晶体进行显微结构表征,结果表明托贝莫来石的孔隙直径为0~160nm,平均孔径约为40nm;其构成的纳米孔隙和通道有利于增加周围流体中离子和气体的溶解度,并可能会影响局部化学平衡。这为层状铝硅酸盐作为自然界以及工业吸附材料和催化剂的更广泛应用提供了重要依据。  相似文献   
3.
金绿宝石作为一种铍矿物,不仅能用于高新科技、军事、医疗等领域,也是一种珍贵的宝石。自十八世纪被发现以来,金绿宝石成因和矿床特征被广泛地关注与研究。本文梳理与归纳了金绿宝石矿物学特征、矿床类型与分布,并给出新的矿床划分方案;总结了金绿宝石矿床的形成机制和影响因素等方面研究进展及科学问题。金绿宝石矿床按照成因可分为四个大类,即熔体结晶类、变质成因类、交代成因类和风化成因类;而根据赋存岩石,可将金绿宝石矿床进一步划分为六种亚型,分别是花岗岩-伟晶岩型、变质伟晶岩型、蛇纹岩型、云母岩型、条纹岩型和砂矿型。金绿宝石可在高温的高分异花岗岩岩浆中直接结晶形成,主要与石英、长石、白云母、绿柱石等共生,也可见锌尖晶石、夕线石和红柱石;在高级变质条件下金绿宝石由绿柱石分解得到,在变质伟晶岩型中金绿宝石与长石和石英共生,而在蛇纹岩型中金绿宝石与硅铍石共生;由远端交代作用控制形成的条纹岩型金绿宝石常与萤石、硅铍石和塔菲石共生,而由近端交代作用控制形成的云母型金绿宝石则与金云母、绿柱石和硅铍石共生。金绿宝石矿床仍存在很多有待解决与深入探讨的科学问题:金绿宝石形成的温压范围比较大,可能存在不同晶体相;针对花岗岩-...  相似文献   
4.
中国土壤正在快速退化,导致土壤的农业生产能力和生态环境缓冲调控能力快速下降,因此亟需开展土壤修复和改良。土壤是岩石圈表层与大气圈、水圈、生物圈、人类圈长期相互作用的产物,是由地表岩石经过长期的风化成土作用过程转化而来的。植物的矿物质营养学说认为,土壤中的矿物质是一切绿色植物唯一的养料。因此,矿物技术是土壤修复与改良最重要的核心。在多年研究工作的基础上,本文将地质学、矿物学、岩石学、地球化学与土壤学、土壤生态学、植物营养学、植物栽培学等学科相结合,提出了土壤修复改良的矿物技术这一概念,并认为这是矿物岩石地球化学一个重要的、新的应用研究方向。并针对土壤修复改良提出了三大矿物技术支撑:1钾硅钙多元素微孔矿物肥料技术——着重修复土壤的农业生产能力;2重建土壤缓冲体系的黏土矿物技术——着重修复土壤的生态环境缓冲调控能力;3固土治沙的矿物胶凝技术——主要修复土层流失导致的沙漠化、荒漠化。  相似文献   
5.
徐兴旺  洪涛  李杭  牛磊  柯强  陈建中  刘善科  翟明国 《岩石学报》2020,36(12):3572-3592
花岗岩-伟晶岩型锂铍矿床是锂铍矿床的重要类型。关于锂铍金属在源区花岗质岩浆形成过程的富集机制,岩石学家和矿床学家多强调锂铍花岗岩-伟晶岩的母花岗岩(淡色花岗岩)源于变沉积岩的白云母熔融,但实验岩石学显示白云母熔融其熔体量小(<10vol%)、熔体从岩石中提取锂铍的效率低。这意味着白云母熔融形成花岗质岩浆过程锂铍金属富集机制可能不是花岗质岩浆获取锂铍的主要机制。基于黑云母熔融可以获得大体积熔体(可达50vol%)的实验结果,指出变杂砂岩(黑云母片麻岩)与含黑云母的英云闪长质片麻岩部分熔融形成的黑云母花岗质高温岩浆(>800℃)其结晶形成黑云母花岗岩并可分异演化为淡色花岗岩与锂铍花岗岩-伟晶岩、并构成高温花岗岩-伟晶岩锂铍成矿系统,是花岗岩-伟晶岩型锂铍矿床形成的重要成矿系统,其特征与形成机制值得进一步研究。黑云母脱水熔融过程残留相没有富含锂铍矿物的形成,新形成的花岗质岩浆可以高效地从源岩中获取锂铍金属,是一种新的锂铍富集机制。研究团队于2018年率先进入阿尔金中段无人区开展稀有金属成矿作用的地质调查与考察。经过两年的野外地质调查,新发现2个中-大型花岗伟晶岩型锂铍矿(吐格曼铍锂矿与吐格曼北锂铍矿)和塔什萨依金绿宝石矿,发现大量的黑云母花岗岩、二云母花岗岩与伟晶岩,指出这些淡色花岗岩与伟晶岩成因于黑云母花岗岩的分异演化并构成高温花岗岩-伟晶岩锂铍成矿系统,初步构建花岗岩-伟晶岩锂铍成矿系统的3种组构类型,初步揭示吐格曼铍锂矿与吐格曼北锂铍矿形成于468~460Ma,为加里东期锂铍伟晶岩区。阿尔金中段高温花岗岩-伟晶岩系统成矿特征显示:1)高温黑云母花岗质岩浆可以通过连续的分异结晶形成从下往上依次分带、垂向叠置的系统(组构A),即从黑云母花岗岩到二云母花岗岩、白云母花岗岩与钠长花岗岩、及从近岩体的电气石带到依次远离岩体的绿柱石带、锂辉石带和锂云母带。组构A锂铍伟晶岩的分带与传统的淡色花岗岩-伟晶岩系统中锂铍伟晶岩的分带相似。2)在剪切构造背景下,花岗岩的分异结晶形成从外到里依次为糜棱岩化黑云母花岗岩、二云母花岗岩与白云母花岗岩的环状岩体,而金绿宝石钠长花岗岩从环状岩体中穿出、并向外演化为金绿宝石伟晶岩、绿柱石伟晶岩和锂辉石伟晶岩,金绿宝石钠长花岗岩与金绿宝石伟晶岩的发育是此组构(组构B)的显著特征。3)在强挤压与剪切构造背景下,黑云母花岗岩呈片麻状,伴生的伟晶岩为二云母花岗质伟晶岩、顺围岩片麻理发育、无锂铍矿化。这些特征给我们一些重要启示:即构造动力作用影响与控制岩浆的结晶分异方式,金绿宝石可形成于高温花岗岩-伟晶岩锂铍成矿系统,形成于岩浆分异与演化低程度阶段的低分异花岗伟晶岩不成矿。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号