首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
大气科学   1篇
地球物理   2篇
地质学   11篇
海洋学   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2008年   1篇
  1990年   1篇
排序方式: 共有15条查询结果,搜索用时 17 毫秒
1.
Natural Hazards - Changes in climate, associated hazards, local adaptations in agriculture, and socioeconomic factors affecting adaptation were investigated using data from a large survey of 2310...  相似文献   
2.
Thin highly permeable laminations have a significant influence on the rate of consolidation of many natural clays. Horne [1] presented analytical solutions for a particular type of problem. The range of solutions has been extended by the authors, who have used the more general finite element technique to solve consolidation problems of finely laminated clays under various geometry, load, and boundary conditions. Solutions are presented in graphical form to enable engineers to predict the rate of settlement for strip loads imposed on the surface of laminated clays. The effect of the laminations on the pore water pressure distribution, and the significant difference between a laminated (composite) material and an anisotropic material, are examined.  相似文献   
3.
Urban and industrial development and the expansion of irrigated agriculture have led to a drastic increase in the exploitation of groundwater resources. The over-exploitation of coastal aquifers has caused a seawater intrusion and has seriously degraded groundwater quality. The shallow coastal aquifer of the Djeffara plain, southeastern Tunisia constitutes an example of water resource suffering an intensive and uncontrolled pumping for irrigation. Intensive exploitation of the aquifer and climate aridity caused a decrease in piezometric level and an increase in salinity. According to the hydrochemical data (Cl, SO4 2−, NO3 , HCO3 , Br, Ca2+, Mg2+, Na+, K+) and the stable isotope composition (oxygen-18 and deuterium content), groundwater salinization in the investigated system is caused by three main processes: (i) salts dissolution especially in the central part of Jerba and around Medenine plain; (ii) evaporation process; and (iii) seawater intrusion which caused the increase in salinity in the peninsula of El Jorf, in Jerba and in the North of Ben Gardane.  相似文献   
4.
5.
The distribution of protein and carbohydrate concentrations of the particulate matter (size fraction: 0.45–160 μm) was studied, from 22 January 2003 to 02 December 2003, in three ponds of increasing salinity in the Sfax solar saltern (Tunisia). The coupling of N/P: DIN (DIN = NO2 + NO3 + NH4+) to DIP (DIP = PO43−) with P/C: protein/carbohydrates ratios along salinity gradient allowed the discrimination of three types of ecosystems. Pond A1 (mean salinity: 45.0 ± 5.4) having marine characteristics showed enhanced P/C ratios during a diatom bloom. N/P and P/C ratios were closely coupled throughout the sampling period, suggesting that the nutritional status is important in determining the seasonal change in the phytoplankton community in pond A1. In pond A16 (mean salinity: 78.7 ± 8.8), despite the high nitrate load, P/C ratios were overall lower than in pond A1. This may be explained by the fact that dinoflagellates, which were the most abundant phytoplankton in pond A16 might be strict heterotrophs and/or mixotrophs, and so they may have not contributed strongly to anabolic processes. Also, N/P and P/C ratios were uncoupled, suggesting that cells in pond A16 were stressed due to the increased salinity caused by water evaporation, and so cells synthesized reserve products such as carbohydrates. In pond M2 (mean salinity: 189.0 ± 13.8), P/C levels were higher than those recorded in either pond A1 or A16. N/P and P/C were more coupled than in pond A16. Species in the hypersaline pond seemed paradoxally less stressed than in pond A16, suggesting that salt-tolerant extremophile species overcome hypersaline constraints and react metabolically by synthesizing carbohydrates and proteins.  相似文献   
6.
Changes over the twentieth century in seasonal mean potential predictability (PP) of global precipitation, 200 hPa height and land surface temperature are examined by using 100-member ensemble. The ensemble simulations have been conducted by using an intermediate complexity atmospheric general circulation model of the International Center for Theoretical Physics, Italy. Using the Hadley Centre sea surface temperature (SST) dataset on a 1° grid, two 31 year periods of 1920–1950 and 1970–2000 are separated to distinguish the periods of low and high SST variability, respectively. The standard deviation values averaged for the (“Niño-3.4”; 5°S–5°N, 170°W–120°W) region are 0.71 and 1.15 °C, for the periods of low and high SST variability, respectively, with a percentage change of 62 % during December–January–February (DJF). The leading eigenvector and the associated principal component time series, also indicate that the amplitude of SST variations have positive trend since 1920s to recent years, particularly over the El Niño Southern Oscillation (ENSO) region. Our hypothesis states that the increase in SST variability has increased the PP for precipitation, 200 hPa height and land surface temperature during the DJF. The analysis of signal and noise shows that the signal-to-noise (S/N) ratio is much increased over most of the globe, particularly over the tropics and subtropics for DJF precipitation. This occurs because of a larger increase in the signal and at the same time a reduction in the noise, over most of the tropical areas. For 200 hPa height, the S/N ratio over the Pacific North American (PNA) region is increasing more than that for the other extratropical regions, because of a larger percentage increase in the signal and only a small increase in noise. It is also found that the increase in seasonal mean transient signal over the PNA region is 50 %, while increase in the noise is only 12 %, during the high SST variability period, which indicates that the increase in signal is more than the noise. For DJF land surface temperature, the perfect model notion is utilized to confirm the changes in PP during the low and high SST variability periods. The correlation between the perfect model and the other members clearly reveal that the seasonal mean PP changed. In particular, the PP for the 31 years period of 1970–2000 is higher than that for the 31 years period of 1920–1950. The land surface temperature PP is increased in northern and southern Africa, central Europe, southern South America, eastern United States and over Canada. The increase of the signal and hence the seasonal mean PP is coincides with an increase in tropical Pacific SST variability, particularly in the ENSO region.  相似文献   
7.
Based on the spherical cavity expansion (SCE) problem, Cudmani and Osinov (Can Geotech J 38:622–638, 2001), Osinov and Cudmani (Int J Numer Anal Method Geomech 25:473–495, 2001) developed a semi-empirical method of interpretation of CPT for coarse-grained soils (sand, gravel) using a hypoplastic constitutive model. Using a material-independent shape factor, the cone penetration resistance was related to the limit pressure required to expand a spherical cavity. The shape factor was observed to be a function of the soil state only, in particular the pressure-dependent relative density. This paper presents an analogous interpretation technique for CPT in fine-grained soils using the shape factor concept, Cavity Expansion approach, and a hypoplastic constitutive model. Relations for the shape factor and the limit pressure have been proposed based on the parameters affecting these quantities. A validation of the proposed interpretation technique with experimental results has also been performed.  相似文献   
8.
A new sorbent was prepared by loading rhodamine B on Amberlite IR‐120. Various physico‐chemical parameters such as effects of adsorbate concentration, contact time, pH, and temperature on the sorption of the dye have been studied. Thermodynamic parameters (ΔH° and ΔS°) were also evaluated for the sorption of dye. Kinetic studies revealed that the sorption of the dye was best fit for pseudo‐second‐order kinetic. The metal ion uptake in different solvent systems has been explored through column studies. On the basis of distribution coefficient (Kd), some heavy metal ions of analytical interest from binary mixtures have been separated. The limit of detection (LOD) for the Ni2+ and Fe3+ metal ions was 0.81 and 0.60 µg L?1, and the limit of quantification (LOQ) was found to be 2.72 and 2.0 µg L?1. This sorbent has also been successfully applied in the analysis of multivitamin formulation. The applicability of the modified resin in the separation of heavy metals constituting real and synthetic samples has been explored.  相似文献   
9.
10.
Climate aridity and intensive exploitation due to uncontrolled pumping for irrigation have caused a drastic decrease in the piezometric level of the shallow aquifer of Chougafiya plain, central Tunisia, and have seriously degraded groundwater quality. According to the hydrochemical data (Cl?, SO4 2?, NO3 ?, HCO3 ?, Br?, Na+, Mg2+, K+, Ca2+, Sr2+) and the stable isotopes (18O and 2H content), groundwater salinization in the investigated aquifer is caused by four main processes: (1) evaporite dissolution (2) cation exchange reactions (3) evaporation processes and (4) mixing with Sabkhas salt water causing salinity to increase in the central and southern parts of the basin. The radiogenic (3H) isotope data provided insight into the presence of significant contemporaneous recharge waters in the western part of the shallow aquifer. The movement of the tritiated water may have occurred according to the general flow path (NW–SE). When tritium was used in conjunction with the stable isotopes and chloride, the mixing process could be clearly identified, especially in the central part of the study area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号