首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   1篇
自然地理   1篇
  2020年   1篇
  2005年   1篇
排序方式: 共有2条查询结果,搜索用时 109 毫秒
1
1.

Bétaré-Oya is one of the gold mining districts in the eastern region of Cameroon. Structural controls on gold mineralization were examined along the Bétaré-Oya Shear Zone, providing further clues on favorable areas for mineral exploration. GIS-based methods combining point pattern (i.e., quadrat count, Fry analysis) and distance distribution analysis were employed here to delineate the spatial patterns of known gold deposits and to evaluate their spatial association with geological structures. Results show that the gold deposits in this area are spatially clustered. At the regional scale, the Fry plot indicates an alignment of deposits, suggesting that gold mineralization is controlled by structures oriented NNE–SSW and NE–SW. At the deposit scale, an alignment is also evident, indicating that the mineralization is also controlled by ENE–WSW-trending structures. The cumulative relative frequency distribution of distances from lineament features to gold occurrence points (DM) and to non-occurrence points (DN) ratio (DM/DN) was used to rank these two major structural trends and their relative importance as mineralization control. The yielded grades show that NE–SW-trending lineaments, akin to P-type structures, play a major role in controlling the gold mineralization in the area compared to other structures. Beyond the goal to foster mineral prospection in the Bétaré-Oya gold district, information yielded in the present study provides relevant criteria for further exploration in the eastern region of Cameroon.

  相似文献   
2.
The study of biogeochemical and hydrological cycles in small experimental watersheds on silicate rocks, common for the Temperate Zone, has not yet been widely applied to the tropics, especially humid areas. This paper presents an updated database for a six-year period for the small experimental watershed of the Mengong brook in the humid tropics (Nsimi, South Cameroon). This watershed is developed on Precambrian granitoids (North Congo shield) and consists of two convexo-concave lateritic hills surrounding a large flat swamp covered by hydromorphic soils rich in upward organic matter. Mineralogical and geochemical investigations were carried out in the protolith, the saprolite, the hillside lateritic soils, and the swamp hydromorphic soils. Biomass chemical analyses were done for the representative species of the swamp vegetation. The groundwater was analysed from the parent rock/saprolite weathering front to the upper fringe in the hillside and swamp system. The chemistry of the wet atmospheric and throughfall deposits and the Mengong waters was monitored.In the Nsimi watershed the carbon transfer occurs primarily in an organic form and essentially as colloids produced by the slow biodegradation of the swamp organic matter. These organic colloids contribute significantly to the mobilization and transfer of Fe, Al, Zr, Ti, and Th in the uppermost first meter of the swamp regolith. When the organic colloid content is low (i.e., in the hillside groundwater), Th and Zr concentrations are extremely low (<3 pmol/L, ICP-MS detection limits). Strongly insoluble secondary thorianite (ThO2) and primary zircon (ZrSiO4) crystals control their mobilization, respectively. This finding thus justifies the potential use of both these elements as inert elements for isoelement mass balance calculations pertaining to the hillside regolith.Chloride can not be used as a conservative tracer of hydrological processes and chemical weathering in this watershed. Biogenic recycling significantly influences the low-Cl input fluxes. Sodium is a good tracer of chemical weathering in the watershed. The sodium solute flux corrected from cyclic salt input was used to assess the chemical weathering rate. Even though low (2.8 mm/kyr), the chemical weathering rate predominates over the mechanical weathering rate (1.9 mm/kyr). Compared to the Rio Icacos watershed, the most studied tropical site, the chemical weathering fluxes of silica and sodium in the Mengong are 16 and 40 times lower, respectively. This is not only related to the protective role of the regolith, thick in both cases, but also to differences in the hydrological functioning. This is to be taken into account in the calculations of the carbon cycle balance for large surfaces like that of the tropical forest ecosystems on a stable shield at the global level.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号