首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
大气科学   9篇
地球物理   1篇
地质学   13篇
  2022年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
  1997年   2篇
  1992年   1篇
  1988年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有23条查询结果,搜索用时 457 毫秒
1.
2.
3.
Abstract

The error associated with the position of the lowest wind level in atmospheric boundary‐layer modelling is studied in connection with vertical resolutions typical of parametrization schemes for atmospheric circulation models. The test case is the neutrally stratified steady‐state boundary layer. Finite‐difference and finite‐element schemes of two types are used: in one case the lowest wind level is centred with respect to the surface and the lowest internal level where the shear stress is calculated, in the other case the lowest wind level is set very close to the surface (5 m). It is found that schemes of the latter type underestimate the friction force at the lowest level and consequently overestimate the wind and the surface stress. This error is largest at low resolution since it is due to the uncentring of the lowest wind level with respect to the stress levels. The error in schemes of the former type is different, and is associated with the determination of the surface stress from a wind at a height that may exceed the extent of the surface layer. For all neutral cases, this error can be made small by adding a corrective term to the traditional logarithmic formulation. This paper shows that considerably more error is generated by uncentred differencing than by deepening the surface layer.  相似文献   
4.
Delage  Pierre  Belmokhtar  Malik 《Acta Geotechnica》2022,17(7):2855-2874
Acta Geotechnica - The investigation of the mechanical behaviour of swelling claystones and shales is challenging because of their very low permeability and of their high sensitivity to changes in...  相似文献   
5.
The solution of the planetary boundary-layer equations by finite-difference methods has recently become very popular. Among recent papers using such methods, several use somewhat arbitrary finite-difference meshes and some do not make use of a constant flux or wall layer near the ground. It is shown that the use of finite differences right down to the ground can be a very inaccurate procedure when used in conjunction with an eddy viscosity or mixing length proportional to (z +z 0) orz near the ground. Such an approach can lead to results that are highly dependent on the finite-difference scheme used and virtually independent of the roughness length,z 0. A scheme using an expanding grid, based on the form chosen for mixing length or eddy viscosity, is proposed which gives good results with or without a surface layer in the case of a neutrally stratified atmosphere.  相似文献   
6.
Two formulations of the stable atmospheric boundary layer are proposed for use in weather forecasting or climate models. They feature the log-linear profile near the surface, but are free from the associated critical Richardson number. The diffusion coefficients in the Ekman layer are a natural extension of the surface layer. They are locally determined using wind shear in one case and turbulent kinetic energy in the other. The parameterizations are tested in a one-dimensional model simulating the evolution of the nocturnal boundary layer with and without radiative cooling. Both formulations give very similar results, except near the top of the boundary layer where the transition to the free atmosphere is smoother with the wind shear formulation. A distinctive feature of these schemes is that they retain their simulating skill when resolution is reduced. This is verified for a wide range of situations. In practice, this means that there is no need for a large-scale model to have a level below 50 m or so.  相似文献   
7.
The cause of a night-time land-surface model cold bias over forest canopies at threedifferent sites is studied in connection with various formulations of turbulent transferand the phenomenon of decoupling between the surface and the boundary layer. Themodel is the Canadian Land Surface Scheme (CLASS), a leading internationally knownmodel that has been tested over a variety of instrumented sites. The bias was first attributed to a deficient turbulent transfer and a few formulations were compared. One formulation is the classical log-linear profile with a sharp cut-off of the fluxes at a critical Richardsonnumber around 0.2, while in the other ones the flux decreases less rapidly with increasingstatic stability. While the surface-layer formulations have an impact on the modelled canopy temperature, other causes were found for the negative bias. The CLASS model neglected the heat capacity of the air trapped inside the canopy and its inclusion multiplied theeffective heat capacity of the canopy, by a factor ranging from 2.3 to 3.4 for the canopies studied, and reduced the error. A correction was also made to the air specific humidity at canopy level and the topsoil thermal conductivity was changed from that of organic matter to that of mineral soil. With these modifications, and using the incoming longwave radiative flux instead of the net longwave flux, the bias almost completely disappeared. Using ascheme with more heat transfer at large static stability, obtained by assuming that thefluxes decrease in magnitude with height in the surface layer, reduced the original biaswhile using the log-linear formulation amplified the cold bias. The impact of the turbulent transfer formulations is much reduced when they are applied to model runs in which the other above modifications have been made.The phenomenon of decoupling is presented and its understanding is complementedwith the new notions of `hard' versus `soft' decoupling and complete versus incompletedecoupling, depending on the impact decoupling has on the model and on the effectiveness of the model in achieving the decoupling. The geostrophic wind speed is a determiningfactor in separating cases of hard decoupling (rare) from the soft cases (frequent) while the completeness of the decoupling primarily depends on the form of the turbulent transfer curve as a function of static stability.  相似文献   
8.
Chalk and other porous rocks are known to behave differently when saturated with different pore fluids. The behavior of these rocks varies with different pore fluids and additional deformation occurs when the pore fluid composition changes. In this article, we review the evidence that behavior in porous rocks is pore‐fluid‐dependent, present a constitutive model for pore‐fluid‐dependent porous rocks, and present a compilation of previously published data to develop quantitative relationships between various pore fluids and mechanical behavior. The model proposed here is based on a state parameter approach for weathering and has similarities to models previously proposed for weathering‐sensitive rocks in that the values for parameters that characterize material behavior vary as a function of weathering. Comparisons with published experimental data indicate that the model is capable of reproducing observed behavior of chalk under a variety of loading conditions and changes in pore fluid composition. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
9.
In this study the effect of the temperature increase on the hydro-mechanical properties of sheared Boom clay samples is investigated. Two samples of Boom clay are resaturated in a new hollow cylinder triaxial cell with a short drainage path and then sheared by performing an axisymmetric triaxial loading. The effect of the undrained heating under deviatoric stress is studied on the first sample. It is shown that undrained temperature increase leads to an increase of pore water pressure and consequently to a decrease of the effective mean stress which brings the sample to failure. For an initially sheared sample, the failure occurs along the existing shear band which behaves as a weakness plane in the sample. The responses of the local strain measurement transducers clearly show the sliding of rigid blocks when failure occurs in the sample.The effect of the presence of a shear band on the permeability of the other Boom clay sample is investigated at ambient temperature and at 80 °C. It is shown that the presence of a shear band does not affect significantly the permeability. These results confirm the good self sealing properties of Boom clay at ambient and at high temperature.  相似文献   
10.
The relationship between the microstructure and the volume change behaviour of fine-grained soft soils is analysed by using a model derived from the experimental observation of the microstructure of soft clays, and the Boundary Element Method (BEM). The soil is modelled as a bidimensional porous matrix containing circular pores. The matrix is linear elastic and obeys a Tresca failure criterion, and the pore size distribution follows a Gaussian normal law. The pores are randomly located, with a minimum distance between them. Volume decrease during compression is due to the collapse of the pores. The collapse of a pore is activated once the stress state at the pore boundary calculated by the BEM is reaching the Tresca failure criterion, thus leading to a non-linear analysis process. An isotropic incremental loading test as well as a loading–unloading test are presented and discussed, showing that the model is able to reproduce properly the experimental volume change behaviour of soft clays and other porous geomaterials like chalk. Numerical results show that a macroscopic hardening elastoplastic behaviour could be obtained from a model elaborated from microstructure observation. © 1997 by John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号