首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
大气科学   13篇
地球物理   2篇
地质学   5篇
海洋学   2篇
天文学   8篇
  2019年   1篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
  1997年   2篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
Vertical stratification changes at low frequency over the last decades are the largest in the western-central Pacific and have the potential to modify the balance between ENSO feedback processes. Here we show evidence of an increase in thermocline feedback in the western-central equatorial Pacific over the last 50 years, and in particular after the climate shift of 1976. It is demonstrated that the thermocline feedback becomes more effective due to the increased stratification in the vicinity of the mean thermocline. This leads to an increase in vertical advection variability twice as large as the increase resulting from the stronger ENSO amplitude (positive asymmetry) in the eastern Pacific that connects to the thermocline in the western-central Pacific through the basin-scale ‘tilt’ mode. Although the zonal advective feedback is dominant over the western-central equatorial Pacific, the more effective thermocline feedback allows for counteracting its warming (cooling) effect during warm (cold) events, leading to the reduced covariability between SST and thermocline depth anomalies in the NINO4 (160°E–150°W; 5°S–5°N) region after the 1976 climate shift. This counter-intuitive relationship between thermocline feedback strength as derived from the linear relationship between SST and thermocline fluctuations and stratification changes is also investigated in a long-term general circulation coupled model simulation. It is suggested that an increase in ENSO amplitude may lead to the decoupling between eastern and central equatorial Pacific sea surface temperature anomalies through its effect on stratification and thermocline feedback in the central-western Pacific.  相似文献   
2.
In order to understand the change in oceanic variability associated with the climate shift of the mid-1970s, we analyze the contribution of momentum forcing to the leading baroclinic modes over the tropical Pacific using Simple Ocean Data Assimilation (SODA, version 2.0.2) for the period of 1958–1997. Specifically, we look at the statistical relationship between the wind projection coefficients and climate indices and attempt to provide a physical explanation for the observed changes. It is found that the wind stress projection coefficients according to the oceanic baroclinic modes are different in terms of their magnitude and phase in the tropical Pacific, reflecting a specific forcing associated with each mode before and after the 1976 climate shift. Compared to that before the 1970s, the first baroclinic mode is had a greater effect on the interannual sea surface temperature due to equatorial wave dynamics, and there was an increased delayed response of the second baroclinic mode variability to the interannual atmospheric forcing after the late 1970s. This reflects changes in ENSO feedback processes associated with the climate shift. Our analysis further indicates that, after the late 1970s, there was a decrease in the wind stress forcing projecting onto the Ekman layer, which is associated with increased mixed-layer depth. This result suggests that the changes in the ENSO properties before and after the late 1970s are largely associated with the changes in the way in which the wind stress forcing is dynamically projected onto the surface layer of the tropical Pacific Ocean over interannual timescales.  相似文献   
3.
B. Dewitte  J. Choi  S.-I. An  S. Thual 《Climate Dynamics》2012,38(11-12):2275-2289
Recent studies report that two types of El Ni?o events have been observed. One is the cold tongue El Ni?o or Eastern Pacific El Ni?o (EP El Ni?o), which is characterized by relatively large sea surface temperature (SST) anomalies in the eastern Pacific, and the other is the warm pool El Ni?o (a.k.a. ‘Central Pacific El Ni?o’ (CP El Ni?o) or ‘El Ni?o Modoki’), in which SST anomalies are confined to the central Pacific. Here the vertical structure variability of the periods during EP and CP is investigated based on the GFDL_CM2.1 model in order to explain the difference in equatorial wave dynamics and associated negative feedback mechanisms. It is shown that the mean stratification in the vicinity of the thermocline of the central Pacific is reduced during CP El Ni?o, which favours the contribution of the gravest baroclinic mode relatively to the higher-order slower baroclinic mode. Energetic Kelvin and first-meridional Rossby wave are evidenced during the CP El Ni?o with distinctive amplitude and propagating characteristics according to their vertical structure (mostly first and second baroclinic modes). In particular, the first baroclinic mode during CP El Ni?o is associated to the ocean basin mode and participates to the recharge process during the whole El Ni?o cycle, whereas the second baroclinic mode is mostly driving the discharge process through the delayed oscillator mechanism. This may explain that the phase transition from warm to neutral/cold conditions during the CP El Ni?o is delayed and/or disrupted compared to the EP El Ni?o. Our results have implications for the interpretation of the variability during periods of high CP El Ni?o occurrence like the last decade.  相似文献   
4.
The DynaMICCS mission is designed to probe and understand the dynamics of crucial regions of the Sun that determine solar variability, including the previously unexplored inner core, the radiative/convective zone interface layers, the photosphere/chromosphere layers and the low corona. The mission delivers data and knowledge that no other known mission provides for understanding space weather and space climate and for advancing stellar physics (internal dynamics) and fundamental physics (neutrino properties, atomic physics, gravitational moments...). The science objectives are achieved using Doppler and magnetic measurements of the solar surface, helioseismic and coronographic measurements, solar irradiance at different wavelengths and in-situ measurements of plasma/energetic particles/magnetic fields. The DynaMICCS payload uses an original concept studied by Thalès Alenia Space in the framework of the CNES call for formation flying missions: an external occultation of the solar light is obtained by putting an occulter spacecraft 150 m (or more) in front of a second spacecraft. The occulter spacecraft, a LEO platform of the mini sat class, e.g. PROTEUS, type carries the helioseismic and irradiance instruments and the formation flying technologies. The latter spacecraft of the same type carries a visible and infrared coronagraph for a unique observation of the solar corona and instrumentation for the study of the solar wind and imagers. This mission must guarantee long (one 11-year solar cycle) and continuous observations (duty cycle > 94%) of signals that can be very weak (the gravity mode detection supposes the measurement of velocity smaller than 1 mm/s). This assumes no interruption in observation and very stable thermal conditions. The preferred orbit therefore is the L1 orbit, which fits these requirements very well and is also an attractive environment for the spacecraft due to its low radiation and low perturbation (solar pressure) environment. This mission is secured by instrumental R and D activities during the present and coming years. Some prototypes of different instruments are already built (GOLFNG, SDM) and the performances will be checked before launch on the ground or in space through planned missions of CNES and PROBA ESA missions (PICARD, LYRA, maybe ASPIICS).  相似文献   
5.
6.
7.
Because climate change challenges the sustainability of important fish populations and the fisheries they support, we need to understand how large scale climatic forcing affects the functioning of marine ecosystems. In the Humboldt Current system (HCS), a main driver of climatic variability is coastally-trapped Kelvin waves (KWs), themselves originating as oceanic equatorial KWs. Here we (i) describe the spatial reorganizations of living organisms in the Humboldt coastal system as affected by oceanic KWs forcing, (ii) quantify the strength of the interactions between the physical and biological component dynamics of the system, (iii) formulate hypotheses on the processes which drive the redistributions of the organisms, and (iv) build scenarios of space occupation in the HCS under varying KW forcing. To address these questions we explore, through bivariate lagged correlations and multivariate statistics, the relationships between time series of oceanic KW amplitude (TAO mooring data and model-resolved baroclinic modes) and coastal Peruvian oceanographic data (SST, coastal upwelled waters extent), anchoveta spatial distribution (mean distance to the coast, spatial concentration of the biomass, mean depth of the schools), and fishing fleet statistics (trip duration, searching duration, number of fishing sets and catch per trip, features of the foraging trajectory as observed by satellite vessel monitoring system). Data sets span all or part of January 1983 to September 2006. The results show that the effects of oceanic KW forcing are significant in all the components of the coastal ecosystem, from oceanography to the behaviour of the top predators – fishers. This result provides evidence for a bottom-up transfer of the behaviours and spatial stucturing through the ecosystem. We propose that contrasting scenarios develop during the passage of upwelling versus downwelling KWs. From a predictive point of view, we show that KW amplitudes observed in the mid-Pacific can be used to forecast which system state will dominate the HCS over the next 2–6 months. Such predictions should be integrated in the Peruvian adaptive fishery management.  相似文献   
8.
Two coupled general circulation models, i.e., the Meteorological Research Institute (MRI) and Geophysical Fluid Dynamics Laboratory (GFDL) models, were chosen to examine changes in mixed layer depth (MLD) in the equatorial tropical Pacific and its relationship with ENSO under climate change projections. The control experiment used pre-industrial greenhouse gas concentrations whereas the 2 × CO2 experiment used doubled CO2 levels. In the control experiment, the MLD simulated in the MRI model was shallower than that in the GFDL model. This resulted in the tropical Pacific’s mean sea surface temperature (SST) increasing at different rates under global warming in the two models. The deeper the mean MLD simulated in the control simulation, the lesser the warming rate of the mean SST simulated in the 2 × CO2 experiment. This demonstrates that the MLD is a key parameter for regulating the response of tropical mean SST to global warming. In particular, in the MRI model, increased stratification associated with global warming amplified wind-driven advection within the mixed layer, leading to greater ENSO variability. On the other hand, in the GFDL model, wind-driven currents were weak, which resulted in mixed-layer dynamics being less sensitive to global warming. The relationship between MLD and ENSO was also examined. Results indicated that the non-linearity between the MLD and ENSO is enhanced from the control run to the 2 × CO2 run in the MRI model, in contrast, the linear relationship between the MLD index and ENSO is unchanged despite an increase in CO2 concentrations in the GFDL model.  相似文献   
9.
We study the relationship between changes in equatorial stratification and low frequency El Niño/Southern Oscillation (ENSO) amplitude modulation in a coupled general circulation model (CGCM) that uses an anomaly coupling strategy to prevent climate drifts in the mean state. The stratification is intensified at upper levels in the western and central equatorial Pacific during periods of high ENSO amplitude. Furthermore, changes in equatorial stratification are connected with subsurface temperature anomalies originating from the central south tropical Pacific. The correlation analysis of ocean temperature anomalies against an index for the ENSO modulation supports the hypothesis of the existence of an oceanic “tunnel” that connects the south tropical Pacific to the equatorial wave guide. Further analysis of the wind stress projection coefficient onto the oceanic baroclinic modes suggests that the low frequency modulation of ENSO amplitude is associated with a significant contribution of higher-order modes in the western and central equatorial Pacific. In the light of these results, we suggest that, in the CGCM, change in the baroclinic mode energy distribution associated with low frequency ENSO amplitude modulation have its source in the central south tropical Pacific.  相似文献   
10.
Spatial and temporal structures of interannual-to-decadal variability in the tropical Pacific Ocean are investigated using results from a global atmosphere–ocean coupled general circulation model. The model produces quite realistic mean state characteristics, despite a sea surface temperature cold bias and a thermocline that is shallower than observations in the western Pacific. The periodicity and spatial patterns of the modelled El Niño Southern Oscillations (ENSO) compare well with those observed over the last 100 years, although the quasi-biennial timescale is dominant. Lag-regression analysis between the mean zonal wind stress and the 20°C isotherm depth suggests that the recently proposed recharge-oscillator paradigm is operating in the model. Decadal thermocline variability is characterized by enhanced variance over the western tropical South Pacific (~7°S). The associated subsurface temperature variability is primarily due to adiabatic displacements of the thermocline as a whole, arising from Ekman pumping anomalies located in the central Pacific, south of the equator. Related wind anomalies appear to be caused by SST anomalies in the eastern equatorial Pacific. This quasi-decadal variability has a timescale between 8 years and 20 years. The relationship between this decadal tropical mode and the low-frequency modulation of ENSO variance is also discussed. Results question the commonly accepted hypothesis that the low-frequency modulation of ENSO is due to decadal changes of the mean state characteristics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号