首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   2篇
自然地理   1篇
  2011年   1篇
  2008年   1篇
  2000年   1篇
排序方式: 共有3条查询结果,搜索用时 78 毫秒
1
1.
Mid to high latitude forest ecosystems have undergone several major compositional changes during the Holocene. The temporal and spatial patterns of these vegetation changes hold potential information to their causes and triggers. Here we test the hypothesis that the timing of vegetation change was synchronous on a sub-continental scale, which implies a common trigger or a step-like change in climate parameters. Pollen diagrams from selected European regions were statistically divided into assemblage zones and the temporal pattern of the zone boundaries analysed. The results show that the temporal pattern of vegetation change was significantly different from random. Times of change cluster around 8.2, 4.8, 3.7, and 1.2 ka, while times of higher than average stability were found around 2.1 and 5.1 ka. Compositional changes linked to the expansion of Corylus avellana and Alnus glutinosa centre around 10.6 and 9.5 ka, respectively. A climatic trigger initiating these changes may have occurred 0.5 to 1 ka earlier, respectively. The synchronous expansion of C. avellana and A. glutinosa exemplify that dispersal is not necessarily followed by population expansion. The partly synchronous, partly random expansion of A. glutinosa in adjacent European regions exemplifies that sudden synchronous population expansions are not species specific traits but vary regionally.  相似文献   
2.
Pollen analysis of sediments from the glacial Lake Trilistnika (2216 m) in the Northwestern Rila Mountains (Bulgaria), supplemented by 13 radiocarbon dates, allowed the reconstruction of the palaeoenvironment and vegetation history in postglacial time. The exact time of the cirque glacier retreat is still under discussion but the lake was free of ice before 15,000 cal. BP, when sedimentation of gray silt began. The lateglacial vegetation, composed of Artemisia, Chenopodiaceae and Poaceae, with isolated stands of Pinus and JuniperusEphedra shrubland, dominated during the stadials and partly retreated during the Bølling/Allerød interstadial complex. The afforestation in the early Holocene (11,500–7800 cal. BP) started with the distribution of pioneer Betula forests with groups of Pinus (P. mugo, P. sylvestris and P. peuce) at mid-high altitudes, and Quercus forests with Tilia, Ulmus, Fraxinus, Corylus below the birch zone. The change to more humid and cooler climate ca. 7800–7500 cal. BP favored the vertical migration of Abies, P. sylvestris and P. peuce. The establishment of Fagus sylvatica took place after 5200 cal. BP, when pure or mixed beech communities were formed. The last tree which invaded the coniferous belt between 4300 and 3400 cal. BP was Picea abies. The first expansion maximum of spruce was recorded after ca. 2700 cal. BP. The vegetation development in historical times was also influenced by human interference, indicated by the continuous presence of pollen anthropogenic indicators such as Triticum, Secale, Hordeum, Plantago lanceolata, Rumex, Scleranthus, Juniperus.  相似文献   
3.
A palynological investigation was conducted on two cores with Holocene sediments collected from the northeastern littoral part of the border Lake Doirani in northern Greece. The radiocarbon dates indicated that the analyzed sediments accumulated during the last 5000 yrs. The pollen-stratigraphic record revealed the environmental changes in the catchment area, starting from a natural undisturbed landscape to one modified by increasing anthropogenic influences. The tree vegetation dominated by Quercus woods in the lowlands and byPinus, Abies, and Fagus at higher altitudes, lasted for the period 2900 - 830 cal. B.C. Subsequently it was replaced by xerothermic herb and tree vegetation as a result of intensive human activity - and farming and stock-breeding. The accumulation of sediments with more sand and gravel in historical time was the result of increased erosion.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号