首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地球物理   5篇
地质学   6篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  2000年   3篇
  1999年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
The EC funded Geochemical Seismic Zonation program (EEC GSZ Project 1996–1998) chose Sardinia as a low-seismicity site, in which the relationships between fluid geochemistry and seismo-tectonics had to be investigated and results compared with outcomes from other selected high-seismicity sites. A first article, examining the role of fault segmentation and seismic quiescence on the geochemical composition of groundwaters and gases, has already been presented (Angelone et al. 2005). This article deals with environmental isotopes which, together with selected hydrochemical data, give hints on tectonically-related fluid circulations. Four water-dominated hydrothermal systems were considered, all located along regional fault systems and discharging groundwaters belonging to the Na–HCO3 and Na–Cl facies. In the considered systems, groundwater circulation takes place, principally, in the Palaeozoic Crystalline Basement (PCB), with the exception of the Logudoro system, where hydrological circuits develop in the Mesozoic Carbonate Platform (MCP). The high CO2 contents, the non-attainment of fluid-rock equilibrium and the large lithological variability prevent the construction of a unique hydrogeological–geochemical conceptual model. In this case, stable isotopes provide a useful tool to describe the origin of fluids and their subterranean movements. Stable isotopes of water, integrated with hydrochemical data, indicate that fluids are derived from three main end members. The dominant component is a relatively recent local meteoric water; the second one is marine water; and the third one is a fossil freshwater, depleted in heavy isotopes with respect to modern rains. The latter end member entered the aquifer system in the past, when climatic conditions were greatly different from today. At least two circulation systems can be recognised, namely a shallow cold system and a deep hydrothermal system, as well as two distinct hydrological processes: (1) gravity-controlled descent of cold water towards greater depths and (2) convection linked to a thermal gradient, causing deep fluids to rise up from the hydrothermal reservoir towards the surface. The highly variable δ13CTDIC values suggest the presence of two distinct CO2 sources, namely, a biogenic one and a thermogenic one. The relation between the isotopic compositions of CO2 and He indicates an increased mantle signature in uprising CO2-rich fluids.  相似文献   
2.
Salvi  S.  Quattrocchi  F.  Brunori  C. A.  Doumaz  F.  Angelone  M.  Billi  A.  Buongiorno  F.  Funiciello  R.  Guerra  M.  Mele  G.  Pizzino  L.  Salvini  F. 《Natural Hazards》1999,20(2-3):255-278
A priority task for correct environmental planningis to evaluate Natural Hazards, especially inhighly populated areas. In particular, thoroughinvestigations based on different Earth Sciencetechniques must be addressed for the Seismic HazardAssessment (SHA) in tectonically active areas. Notonly the management but also the multidisciplinaryanalysis of all the SHA-related data sets is bestperformed using a Geographic Information System. In this paper we show how a research-oriented GIS isbuilt and used in a practical case. The GeochemicalGeographic Information System (G2IS) wasdeveloped and applied to the Gargano promontory(southern Italy) in the framework of an EC researchproject, the Geochemical Seismic Zonation (GSZ)Project. This multidisciplinary – multiscalingpowerful tool is described in its structure, updatingprocedures and manipulation techniques. Preliminaryresults are presented on the detection of geochemically active fault zones and theircorrelation with remote sensing data and otherevidences of seismogenic structures.  相似文献   
3.
Groundwater surveys were performed by detailed(around 300 sites) grid-analysis of water temperature, pH, redox potential, electrical conductivity, 222Rn, alkalinity and by calculating the pCO2, throughout the Ciampino and Marino towns in the Alban Hills quiescent volcano (Central Italy). Following several episodes of dangerous CO2 exhalation from soils during the last 20 years and earlier ashistorically recorded, the work aimed at assessing the Natural Gas Hazard (NGH) including the indoor-Rn hazard. The NGH was defined as the probability of an area to become a site of poisonous peri-volcanic gas exhalations from soils to the lower atmosphere (comprising buildings). CO2 was found to be a ``carrier' for the other poisonous minor and in trace components (HsS, CH4, 222Rn, etc.). This assessment was performed by extrapolating in the aquifer CO2 and 222Rn conditions, and discriminating sectors where future CO2 flux in soils as well as indoor-Rn measurements have to be noted. A preliminary indoor-Rn survey was performed at about 200 sites. The highest values were found in the highest pCO2 and high 222Rn values in groundwater. This indicates convection and enhanced permeability in certain sectors of the main aquifer, i.e., along the bordering faults and inside the gas-trap of the Ciampino Horst., where ``continuous gas-phase micro-macro seepage mechanism' is invoked to explain the high peri-volcanic gases flux.  相似文献   
4.
A geochemical survey of thermal waters collected from submarine vents at Panarea Island (Aeolian Islands, southern Italy) was carried out from December 2002 to March 2007, in order to investigate (i) the geochemical processes controlling the chemical composition of the hydrothermal fluids and (ii) the possible relations between the chemical features of the hydrothermal reservoir and the activity of the magmatic system. Compositional data of the thermal water samples were integrated in a hydrological conceptual model, which describes the formation of the vent fluid by mixing of seawater, seawater concentrated by boiling, and a deep, highly-saline end-member, whose composition is regulated by water-rock interactions at relatively high temperature and shows clear clues of magmatic-related inputs. The chemical composition of concentrated seawater was assumed to be represented by that of the water sample having the highest Mg content. The composition of the deep end-member was instead calculated by extrapolation assuming a zero-Mg end-member. The Na–K–Ca geothermometer, when applied to the thermal end-member composition, indicated an equilibrium temperature of approximately 300 °C, a temperature in agreement with the results obtained by gas-geothermometry.  相似文献   
5.
—A “quasi continuous mode” monitoring system to measure the radon concentration within a natural environment (mainly groundwater), was designed, assembled and tested, under collaboration between DINCE and ING, partly within the framework of two EC funded programs.¶The radon monitor consists of a customised discrete automatic sampler which produces a gas flux circuit, and an economical f-scintillation cell, coupled with a reliable electronics-photomultiplier assemblage. A convenient calibration system together with a temporised control system have been set up. The overall “mean efficiency” of the system was calculated to be 7.79ǂ.13 counts per minute (cpm) for each Bq/L.¶Taking into consideration the present and future requirements of a geochemical surveillance network to assess natural hazards, the prototype design evolved from the study of existing systems devoted to monitor radon concentration levels, which are critically reviewed within this paper.¶In response to the main prerequisite of a remote station: maximum remote sensor versatility preserving shared software and hardware for the network as a whole, this radon monitoring system was conceived as part of a multi-parametric Geochemical Monitoring System (GMS II) prototype, designed and realised as a test-stand for sensors (chemical, hydrological, geophysical, organic chemistry devoted, etc.) in continuous evolution throughout the international market.  相似文献   
6.
The first comprehensive geochemical data-set of the fluids circulating over a 14,000 km2-wide seismic-prone area of the Southern Apennines, Calabria Region (Italy), is presented here. The geochemical investigations were carried out with the twofold aim of constraining the origin and interactions of the circulating fluids and to investigate possible relationships with local faults. Sixty samples of both thermal and cold waters were collected, from which the dissolved gases were extracted. The geochemical features of the water samples display different types and degrees of water–rock interactions, irrespective of the outlet temperature. The calculated equilibrium temperatures of the thermal waters (60–160 °C) and the low heat flow of the whole study area, are consistent with a heating process due to deep water circulation and rapid upflow through lithospheric structures. The composition of the dissolved gases reveals that crustal-originating gases (N2 and CO2-dominated) feed all the groundwaters. The 3He/4He ratios of the dissolved He, in the range of 0.03–0.22Rac for the thermal waters and 0.05–0.63Rac for the cold waters (Rac = He isotope ratio corrected for atmospheric contamination), are mainly the result of a two-component (radiogenic and atmospheric) mixing, although indications of mantle-derived He are found in some cold waters. As the study area had been hit by 18 of the most destructive earthquakes (magnitude ranging from 5.9 to 7.2) occurring over a 280-a time span (1626–1908) in the Southern Apennines, the reported results on the circulating fluids may represent the reference for a better inside knowledge of the fault-fluid relationships and for the development of long-term geochemical monitoring strategies for the area.  相似文献   
7.
1783年2~3月期间卡拉布里亚南部发生了5次大地震。大部分学者认为该次地震发震断层西倾、断层倾角较陡,断层在位于平原ESE部地区的结晶基岩上发生错动(Aspromonte断层)。而另外一些学者则认为发震断层为东倾且倾角较缓的隐伏断层(G ioia Tauro断层),和与其相邻的墨西拿海峡断裂相似。为了寻找发震断层方面的证据,1999—2000年期间,我们在G ioia Tauro平原共开展了4次地球化学调查。调查的目的是通过识别断层作用(或破裂),加强和深部水文循环有关的地球化学异常,得到关于地震成因方面的新的认识。深部流体特征用温度、盐度、碳总量与氡异常表征。共划分出三个主要的深部流体释放带:N icotera-Galatro地区(沿着NW向N icotera-G ioiosa-Jonica区域断裂线的N icotera-Galatro段);G ioia-Tauro与Sem inara之间的NW-SE向小区域及Rosarno与Palm i之间的海岸线。其中Rosarno与Palm i之间的海岸线正好位于推测的G ioia Tauro断层上界。绝大部分地球化学异常发生在Rosarno周围,该地区位于G ioiaTauro断层与N icotera-G ioiosa-Jonica区域断裂线的交汇部位。而在Aspromonte断层带没有发生明显的地下水侵蚀和压裂。基于以上发现我们提出了地球化学活动断裂带和地球化学交互作用断裂带的概念,从而进一步认识断层带的水力学特征及地壳中促使裂隙渗透性增强的断层作用机制。  相似文献   
8.

Authors Index

Index to volume 4  相似文献   
9.
Geological sequestration of anthropogenic CO2 appears to be a promising method for reducing the amount of greenhouse gases released to the atmosphere. Geochemical modelling of the storage capacity for CO2 in saline aquifers, sandstones and/or carbonates should be based on natural analogues both in situ and in the laboratory. The main focus of this paper has been to study natural gas emissions representing extremely attractive surrogates for the study and prediction of the possible consequences of leakage from geological sequestration sites of anthropogenic CO2 (i.e., the return to surface, potentially causing localised environmental problems). These include a comparison among three different Italian case histories: (i) the Solfatara crater (Phlegraean Fields caldera, southern Italy) is an ancient Roman spa. The area is characterised by intense and diffuse hydrothermal activity, testified by hot acidic mud pools, thermal springs and a large fumarolic field. Soil gas flux measurements show that the entire area discharges between 1200 and 1500 tons of CO2 per day; (ii) the Panarea Island (Aeolian Islands, southern Italy) where a huge submarine volcanic-hydrothermal gas burst occurred in November, 2002. The submarine gas emissions chemically modified seawater causing a strong modification of the marine ecosystem. All of the collected gases are CO2-dominant (maximum value: 98.43 vol.%); (iii) the Tor Caldara area (Central Italy), located in a peripheral sector of the quiescent Alban Hills volcano, along the faults of the Ardea Basin transfer structure. The area is characterised by huge CO2 degassing both from water and soil. Although the above mentioned areas do not represent a storage scenario, these sites do provide many opportunities to study near-surface processes and to test monitoring methodologies.  相似文献   
10.
Five large earthquakes shook southern Calabria in February–March 1783. We focused on the first shock (Me 6.9), which occurred on 5 February in the Gioia Tauro Plain. Most investigators attribute the event to a W-dipping, high-angle fault running at the base of the Aspromonte crystalline bedrock on the ESE side of the Plain (Aspromonte Fault). Other workers contend that the earthquake was generated by an E-dipping, low-angle blind fault (Gioia Tauro Fault) similar to the adjacent Messina Straits Fault. In 1999–2000 we carried out four geochemical surveys in the Gioia Tauro Plain with the aim of contributing to this debate with an independent line of evidence. We sampled 240 groundwater sites and measured a suite of in-situ physical and chemical parameters. Our goal was to gain new insight into the seismogenic source by identifying geochemical anomalies associated with the deepening of the hydrological circuits due to the presence of enhanced faulting/fracturing. The deep-fluid signatures are mainly represented by temperature, salinity, total carbon and radon anomalies. We identified three zones of dominant deep fluid discharge: the Nicotera-Galatro area (along the Nicotera-Galatro portion of the NW-trending Nicotera-Gioiosa Jonica lineament), a small NW-SE trending area between Gioia Tauro and Seminara, and the coastline between Rosarno and Palmi. This latter sector locates just above the upper edge of the hypothesised Gioia Tauro Fault. Most of the geochemical anomalies are recorded around Rosarno, at the intersection between the Gioia Tauro Fault and the Nicotera-Gioiosa Jonica lineament. In contrast, no evidence of groundwater deepening and active fracturing was found along the Aspromonte Fault. Based on our new findings we updated the concepts of Geochemically Active Fault Zone and Geochemical Interaction Fault Zone in view of the modern understanding of the hydro-mechanical properties of fault zones and the faulting mechanisms promoting fracture permeability in the crust.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号