首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   3篇
  2004年   1篇
  2003年   1篇
  1989年   1篇
排序方式: 共有3条查询结果,搜索用时 203 毫秒
1
1.
The Hawaiian–Emperor Seamount Chain (ESC), in the northernPacific Ocean, was produced during the passage of the PacificPlate over the Hawaiian hotspot. Major and trace element concentrationsand Sr–Nd–Pb isotopic compositions of shield andpost-shield lavas from nine of the Emperor Seamounts providea 43 Myr record of the chemistry of the oldest preserved Hawaiianmagmatism during the Late Mesozoic and Early Cenozoic (from85 to 42 Ma). These data demonstrate that there were large variationsin the composition of Hawaiian magmatism over this period. Tholeiiticbasalts from Meiji Seamount (85 Ma), at the northernmost endof the ESC, have low concentrations of incompatible trace elements,and unradiogenic Sr isotopic compositions, compared with youngerlavas from the volcanoes of the Hawaiian Chain (<43 Ma).Lavas from Detroit Seamount (81 Ma) have highly depleted incompatibletrace element and Sr–Nd isotopic compositions, which aresimilar to those of Pacific mid-ocean ridge basalts. Lavas fromthe younger Emperor Seamounts (62–42 Ma) have trace elementcompositions similar to those of lavas from the Hawaiian Islands,but initial 87Sr/86Sr ratios extend to lower values. From 81to 42 Ma there was a systematic increase in 87Sr/86Sr of boththoleiitic and alkalic lavas. The age of the oceanic lithosphereat the time of seamount formation decreases northwards alongthe Emperor Seamount Chain, and the oldest Emperor Seamountswere built upon young, thin lithosphere close to a former spreadingcentre. However, the inferred distance of the Hawaiian plumefrom a former spreading centre, and the isotopic compositionsof the oldest Emperor lavas appear to rule out plume–ridgeinteraction as an explanation for their depleted compositions.We suggest that the observed temporal chemical and isotopicvariations may instead be due to variations in the degree ofmelting of a heterogeneous mantle, resulting from differencesin the thickness of the oceanic lithosphere upon which the EmperorSeamounts were constructed. During the Cretaceous, when theHawaiian plume was situated beneath young, thin lithosphere,the degree of melting within the plume was greater, and incompatibletrace element depleted, refractory mantle components contributedmore to melting. KEY WORDS: Emperor Seamounts; Hawaiian plume; lava geochemistry; lithosphere thickness; mantle heterogeneity  相似文献   
2.
This study focuses on the origin of magma heterogeneity andthe genesis of refractory, boninite-type magmas along an arc–ridgeintersection, exposed in the Lewis Hills (Bay of Islands Ophiolite).The Lewis Hills contain the fossil fracture zone contact betweena split island arc and its related marginal oceanic basin. Threetypes of intrusions, which are closely related to this narrowtectonic boundary, have been investigated. Parental melts inequilibrium with the ultramafic cumulates of the PyroxeniteSuite are inferred to have high MgO contents and low Al2O3,Na2O and TiO2 contents. The trace element signatures of thesePyroxenite Suite parental melts indicate a re-enriched, highlydepleted source with 0·1 x mid-ocean ridge basalt (MORB)abundances of the heavy rare earth elements (HREE). InitialNd values of the Pyroxenite Suite range from -1·5 to+0·6, which overlap those observed for the island arc.Furthermore, the Pyroxenite Suite parental melts bear strongsimilarities to boninite-type equilibrium melts from islandarc-related pyroxenitic dykes and harzburgites. Basaltic dykessplit into two groups. Group I dykes have 0·6 x MORBabundances of the HREE, and initial Nd values ranging from +5·4to +7·5. Thus, they have a strong geochemical affinitywith basalts derived from the marginal basin spreading ridge.Group II dykes have comparatively lower trace element abundances(0·3 x MORB abundances of HREE), and slightly lower initialNd values (+5·4 to +5·9). The geochemical characteristicsof the Group II dykes are transitional between those of GroupI dykes and the Pyroxenite Suite parental melts. Cumulates fromthe Late Intrusion Suite are similarly transitional, with Ndvalues ranging from +2·9 to +4·6. We suggest thatthe magma heterogeneity observed in the Lewis Hills is due tothe involvement of two compositionally distinct mantle sources,which are the sub-island lithospheric mantle and the asthenosphericmarginal basin mantle. It is likely that the refractory, boninite-typeparental melts of the Pyroxenite Suite result from remeltingof the sub-arc lithospheric mantle at an arc–ridge intersection.Furthermore, it is suggested that the thermal-dynamic conditionsof the transtensional transform fault have provided the prerequisitefor generating magma heterogeneity, as a result of mixing relationshipsbetween arc-related and marginal basin-related magmas. KEY WORDS: Bay of Islands ophiolite; transform (arc)–ridge intersection; boninites; rare earth elements, Nd isotopes  相似文献   
3.
Compositions of the principal minerals and Pb, Nd, and Sr isotopeanalyses of clinopyroxene (cpx) separates are reported for TypeI spinel peridotite xenoliths from the Peridot Mesa vent ofthe San Carlos Volcanic Field. The principal phases are in chemicalequilibrium within each inclusion. Systematic changes in mineralcomposition accompany lithological changes from fertile lherzolitesto infertile harzburgites. These changes are consistent witha fusion residue origin for the major element component of thexenoliths, as noted previously by Frey & Prinz (1978). ExcessFe is additionally present in some inclusions. Pyroxene equilibrationtemperatures calculated using the Wells (1977) geothermometerfall in the narrow range of 1022?34?C (1 s.d.). Equilibrationpressures poorly limit corresponding depths to anywhere between30 and 65 km within the lithospheric mantle. The geotherm is‘advective’ and elevated by 500?C at the depth ofsampling over a reference conductive shield geotherm. The highheat flow measured at the surface results from a combinationof extension and magmatism, with the temperature perturbationextending into the lithospheric mantle. 143Nd/144Nd ratios (0?51251–0?51367) and 87Sr/86Sr ratios(0?70190–0?70504) in cpx demonstrate gross isotopic heterogeneitybeneath the Peridot Mesa vent. This largely overlaps the oceanicmantle array, although four inclusions have Nd greater thanmid-ocean ridge basalts (MORB). PM-228J with Nd = +20 is themost extreme yet reported for a spinel Iherzolite. Pb abundancesin cpx (generally <0?03ppm) are far lower than previouslyreported values. 206Pb/204Pb ratios (17?5–19?1) overlapoceanic basalts and do not correlate with 87Sr/86Sr ratio. However,some of the inclusions exhibit MORB-like 206Pb/204Pb ratiosbut much higher 87Sr/86Sr ratios, which suggests a possiblegenetic link of detached lithospheric mantle with certain oceanicislands. Metasomatic trace element enrichment processes are most widespreadin the infertile (Al-poor, Cr-rich) inclusions, as noted byFrey & Prinz (1978). This systematic relationship is a localfeature of the mantle and suggests that some degree of meltingoccurs commensurately with incompatible element addition. Inparticular, anhydrous peridotite above its volatile-presentsolidus that was flushed with C-O-H fluids containing incompatibleelements would melt and form an enriched infertile fusion residue.The ascending magmas responsible for forming Type II peridotiteveins are the most probable source of the volatiles and mayin some cases react to produce chemical gradients in the wall-rock.Prior metasomatism is also evident isotopically in some inclusions.Overall, the lithospheric mantle beneath Peridot Mesa has suffereda multi-stage history of enrichment, depletion and melting atvarious times since it became attached to the crust above.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号