首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   1篇
测绘学   2篇
地球物理   12篇
地质学   42篇
海洋学   1篇
天文学   13篇
综合类   3篇
自然地理   4篇
  2021年   2篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2003年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1973年   2篇
  1970年   1篇
  1969年   2篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
1.
2.
Nagpal  Anushree  Hassan  Mohammad  Siddiqui  Masood Ahsan  Tajdar  Atiqua  Hashim  Mohammad  Singh  Abhra  Gaur  Suman 《GeoJournal》2021,86(2):649-661
GeoJournal - Sanitation is a multidimensional concept alluding primarily to provision of services for safe disposal of human excreta, provision of clean potable water as well as maintenance of...  相似文献   
3.
4.
GPS-derived deformation rates in northwestern Himalaya and Ladakh   总被引:1,自引:0,他引:1  
Deformation rates derived from GPS measurements made at two continuously operating stations at Leh (34.1°N, 77.6°E) and Hanle (32.7°N, 78.9°E), and eight campaign sites in the trans-Himalayan Ladakh spanning 11 years (1997–2008), provide a clear picture of the kinematics of this region as well as the convergence rate across northwestern Himalaya. All the Ladakh sites move 32–34 mm/year NE in the ITRF2005 reference frame, and their relative velocities are 13–16 mm/year SW in the Indian reference frame and ~19 mm/year W with reference to the Lhasa IGS station in southeastern Tibet. The results indicate that there is no statistically significant deformation in the 200-km stretch between the continuous sites Leh and Hanle as well as between Leh and Nubra valley sites along the Karakoram fault, whereas the sites in and around the splayed Karakoram fault region indicate surface deformation of 2.5 mm/year. Campaign sites along the Karakoram fault zone indicate a fault parallel surface motion of 1.4–2.5 mm/year in the Tangste and western Panamik segment of the Karakoram fault, which quantifies the best possible GPS-derived dextral slip rate of 3 mm/year along this fault during this 11-year period. Baselines of Ladakh sites show convergence rates of 15–18 mm/year with respect to south India and 12–15 mm/year with respect to Delhi in north India and Almora in the Himalaya ~400 km north-northeast of Delhi. These constitute an arc normal convergence of 12–15 mm/year across the western Himalaya, which is consistent with arc normal convergence all along the Himalayan arc from west to east. Baseline extension rates of 14–16 mm/year between Lhasa and Ladakh sites are consistent with the east–west extension rate of Tibetan Plateau.  相似文献   
5.
We present new insights on the time-averaged surface velocities, convergence and extension rates along arc-normal transects in Kumaon, Garhwal and Kashmir–Himachal regions in the Indian Himalaya from 13 years of high-precision Global Positioning System (GPS) time series (1995–2008) derived from GPS data at 14 GPS permanent and 42 campaign stations between $29.5{-}35^{\circ }\hbox {N}$ and $76{-}81^{\circ }\hbox {E}$ . The GPS surface horizontal velocities vary significantly from the Higher to Lesser Himalaya and are of the order of 30 to 48 mm/year NE in ITRF 2005 reference frame, and 17 to 2 mm/year SW in an India fixed reference frame indicating that this region is accommodating less than 2 cm/year of the India–Eurasia plate motion ( ${\sim }4~\hbox {cm/year}$ ). The total arc-normal shortening varies between ${\sim }10{-}14~\hbox {mm/year}$ along the different transects of the northwest Himalayan wedge, between the Indo-Tsangpo suture to the north and the Indo-Gangetic foreland to the south indicating high strain accumulation in the Himalayan wedge. This convergence is being accommodated differentially along the arc-normal transects; ${\sim } 5{-}10~\hbox {mm/year}$ in Lesser Himalaya and 3–4 mm/year in Higher Himalaya south of South Tibetan Detachment. Most of the convergence in the Lesser Himalaya of Garhwal and Kumaon is being accommodated just south of the Main Central Thrust fault trace, indicating high strain accumulation in this region which is also consistent with the high seismic activity in this region. In addition, for the first time an arc-normal extension of ${\sim }6~\hbox {mm/year}$ has also been observed in the Tethyan Himalaya of Kumaon. Inverse modeling of GPS-derived surface deformation rates in Garhwal and Kumaon Himalaya using a single dislocation indicate that the Main Himalayan Thrust is locked from the surface to a depth of ${\sim }15{-}20~\hbox {km}$ over a width of 110 km with associated slip rate of ${\sim }16{-}18~\hbox {mm/year}$ . These results indicate that the arc-normal rates in the Northwest Himalaya have a complex deformation pattern involving both convergence and extension, and rigorous seismo-tectonic models in the Himalaya are necessary to account for this pattern. In addition, the results also gave an estimate of co-seismic and post-seismic motion associated with the 1999 Chamoli earthquake, which is modeled to derive the slip and geometry of the rupture plane.  相似文献   
6.
7.
The equivalent width calculations for the fundamental vibration rotation band lines of HeH+ have been carried out for a non-DA white dwarf model with an effective temperature of 12 000 K. BothP andR branch lines with rotational quantum numbersJ=3 to 18 were included in the calculations. A search for these lines in helium rich white dwarfs is suggested.  相似文献   
8.
A circular structure, termed as cauldron of volcanic origin, was located near Mohar village in Shivpuri district (M.P.) in the year 2000. Subsequently, the same structure was called as Dhala structure of impact origin. There may be debate over the origin and evolution of this circular structure, but it is characterized by a unique lithological set-up within the Bundelkhand craton. The circular structure is defined by annular disposition of igneous and sedimentary rocks. This includes a set of felsic volcanic rocks and associated breccias named as Mohar Formation, exposed in the outer rim of the circular structure. The inner part of the circular structure has sedimentary sequence, termed as Dhala Formation.The field relations indicate that the Mohar and Dhala foarmations are younger than Bundelkhand granitoid complex but older than Kaimur Group. This period in Indian stratigraphy corresponds to Semri Group which consists of Porcellanite Formation, the rocks of which have formed due to deposition of volcanic ash.The geochronological data and field relations between different litho-units indicate that the Mohar volcanism which generated large volume of volcanic ash was a possible source for the formation of Porcellanite Formation. The deposition of sedimentary sequence in main Vindhyan basin was continued, whereas the volcanic activity in Mohar area continued till H ≈ 1.0 Ga. Since, acid volcanic activity has been reported in different parts of the world at H ≈ 1.0 Ga., it is possible that the Mohar acid volcanic activity is not an isolated event; instead it may be a part of global volcanic activities around H ≈ 1.0 Ga.  相似文献   
9.
10.
The paper presents values of partial geoidal parametersN, ξ and η which define the departure of the geoid from the reference spheroid, at 1° intervals over the Indian subcontinent. These values represent contributions arising from the gravity anomaly data over the entire earth's surface, except for that from a 6°×6° element around the immediate neighbourhood of the point. Complete values of these parameters at a point can be obtained simply by adding to these partial values, contributions from the 6°×6° element circumscribing that point. The objective of the study was to provide a ready basis for updating the geoidal parameters at the initial reference point as and when the density and quality of local gravity data around it improve. These computations once made, would also facilitate calculation of geoidal parameters at a fairly large number of astro-geodetic stations apart from that at the initial reference point, which should lead to considerably more precise value of the absolute datum of the Indian geodetic dasystem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号