首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   1篇
  国内免费   1篇
测绘学   9篇
大气科学   1篇
地球物理   15篇
地质学   10篇
海洋学   4篇
天文学   13篇
综合类   3篇
自然地理   7篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   5篇
  1999年   2篇
  1997年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
1.
Studies of basement‐bounded canyons in West Greenland show that these were long‐lasting features that extended inland for several hundreds of kilometres, acting as prominent sediment conduits sourcing the Albian–Palaeocene Nuussuaq Basin during several phases of basin evolution. The Ilulissat Icefjord canyon was the major conduit for sediment into the basin and provenance data indicate that it had a huge catchment area that extended to East Greenland. The Uparuaqqusuitsut canyon was also an important conduit for sediment in the northern part of the basin. It is suggested that the initial canyon formation occurred during uplift events in the Late Triassic and Late Jurassic when the deeply weathered basement surface formed during Early–Middle Triassic time was eroded. The recognition of these canyons as long‐lasting sediment conduits have huge implications for understanding the sediment distribution, source‐to‐sink studies and the palaeogeography of the North Atlantic basins.  相似文献   
2.
3.
Quality assessment of GPS reprocessed terrestrial reference frame   总被引:5,自引:1,他引:4  
The International GNSS Service (IGS) contributes to the construction of the International Terrestrial Reference Frame (ITRF) by submitting time series of station positions and Earth Rotation Parameters (ERP). For the first time, its submission to the ITRF2008 construction is based on a combination of entirely reprocessed GPS solutions delivered by 11 Analysis Centers (ACs). We analyze the IGS submission and four of the individual AC contributions in terms of the GNSS frame origin and scale, station position repeatability and time series seasonal variations. We show here that the GPS Terrestrial Reference Frame (TRF) origin is consistent with Satellite laser Ranging (SLR) at the centimeter level with a drift lower than 1 mm/year. Although the scale drift compared to Very Long baseline Interferometry (VLBI) and SLR mean scale is smaller than 0.4 mm/year, we think that it would be premature to use that information in the ITRF scale definition due to its strong dependence on the GPS satellite and ground antenna phase center variations. The new position time series also show a better repeatability compared to past IGS combined products and their annual variations are shown to be more consistent with loading models. The comparison of GPS station positions and velocities to those of VLBI via local ties in co-located sites demonstrates that the IGS reprocessed solution submitted to the ITRF2008 is more reliable and precise than any of the past submissions. However, we show that some of the remaining inconsistencies between GPS and VLBI positioning may be caused by uncalibrated GNSS radomes.  相似文献   
4.
5.
Tsunami waves struck the Indian coast on 26th December 2004 affecting the Andaman and Nicobar group of islands. A quick assessment of the status of the vital coastal ecosystems has been made using pre- and post-tsunami Advance Wide Field Sensor (AWiFS) data of Indian satellite RESOURCESAT with an accuracy of 87–90% and the Kappa ranging from 0.8696 to 0.9053. Among the coastal ecosystems the coral reefs have suffered the maximum with the Nicobar reefs (69% eroded and 29% degraded) bearing the brunt more than the Andaman reefs (54% eroded and 22% degraded). Significant improvement to the condition of the reef damaged due to backwash has been noted. About 41% of the Sentinel reef area has undergone significant improvement. The continuance of the erosion of the southwestern Andaman reefs is due to the impact of recurring earthquakes. The impact on mangroves of both the groups of islands has been due to uprooting as well as inundation of seawater and resulting stagnation. Changes are expected in community structure of mangroves as a result of tsunami.  相似文献   
6.
Although GNSS techniques are theoretically sensitive to the Earth center of mass, it is often preferable to remove intrinsic origin and scale information from the estimated station positions since they are known to be affected by systematic errors. This is usually done by estimating the parameters of a linearized similarity transformation which relates the quasi-instantaneous frames to a long-term frame such as the International Terrestrial Reference Frame (ITRF). It is well known that non-linear station motions can partially alias into these parameters. We discuss in this paper some procedures that may allow reducing these aliasing effects in the case of the GPS techniques. The options include the use of well-distributed sub-networks for the frame transformation estimation, the use of site loading corrections, a modification of the stochastic model by downweighting heights, or the joint estimation of the low degrees of the deformation field. We confirm that the standard approach consisting of estimating the transformation over the whole network is particularly harmful for the loading signals if the network is not well distributed. Downweighting the height component, using a uniform sub-network, or estimating the deformation field perform similarly in drastically reducing the amplitude of the aliasing effect. The application of these methods to reprocessed GPS terrestrial frames permits an assessment of the level of agreement between GPS and our loading model, which is found to be about 1.5 mm WRMS in height and 0.8 mm WRMS in the horizontal at the annual frequency. Aliased loading signals are not the main source of discrepancies between loading displacement models and GPS position time series.  相似文献   
7.
Effects of insufficient soil aeration on the functioning of plants form an important field of research. A well-known and frequently used utility to express oxygen stress experienced by plants is the Feddes-function. This function reduces root water uptake linearly between two constant pressure heads, representing threshold values for minimum and maximum oxygen deficiency. However, the correctness of this expression has never been evaluated and constant critical values for oxygen stress are likely to be inappropriate. On theoretical grounds it is expected that oxygen stress depends on various abiotic and biotic factors. In this paper, we propose a fundamentally different approach to assess oxygen stress: we built a plant physiological and soil physical process-based model to calculate the minimum gas filled porosity of the soil (gas_min) at which oxygen stress occurs.First, we calculated the minimum oxygen concentration in the gas phase of the soil needed to sustain the roots through (micro-scale) diffusion with just enough oxygen to respire. Subsequently, gas_min that corresponds to this minimum oxygen concentration was calculated from diffusion from the atmosphere through the soil (macro-scale).We analyzed the validity of constant critical values to represent oxygen stress in terms of gas_min, based on model simulations in which we distinguished different soil types and in which we varied temperature, organic matter content, soil depth and plant characteristics. Furthermore, in order to compare our model results with the Feddes-function, we linked root oxygen stress to root water uptake (through the sink term variable F, which is the ratio of actual and potential uptake).The simulations showed that gas_min is especially sensitive to soil temperature, plant characteristics (root dry weight and maintenance respiration coefficient) and soil depth but hardly to soil organic matter content. Moreover, gas_min varied considerably between soil types and was larger in sandy soils than in clayey soils. We demonstrated that F of the Feddes-function indeed decreases approximately linearly, but that actual oxygen stress already starts at drier conditions than according to the Feddes-function. How much drier is depended on the factors indicated above. Thus, the Feddes-function might cause large errors in the prediction of transpiration reduction and growth reduction through oxygen stress.We made our method easily accessible to others by implementing it in SWAP, a user-friendly soil water model that is coupled to plant growth. Since constant values for gas_min in plant and hydrological modeling appeared to be inappropriate, an integrated approach, including both physiological and physical processes, should be used instead. Therefore, we advocate using our method in all situations where oxygen stress could occur.  相似文献   
8.
Ground-penetrating radar (GPR) is a geophysical technique widely used to study the shallow subsurface and identify various sediment features that reflect electromagnetic waves. However, little is known about the exact cause of GPR reflections because few studies have coupled wave theory to petrophysical data. In this study, a 100- and 200-MHz GPR survey was conducted on aeolian deposits in a quarry. Time-domain reflectometry (TDR) was used to obtain detailed information on the product of relative permittivity (ɛr) and relative magnetic permeability (μr), which mainly controls the GPR contrast parameter in the subsurface. Combining TDR data and lacquer peels from the quarry wall allowed the identification of various relationships between sediment characteristics and ɛrμr. Synthetic radar traces, constructed using the TDR logs and sedimentological data from the lacquer peels, were compared with the actual GPR sections. Numerous peaks in ɛrμr, which are superimposed on a baseline value of 4 for dry sand, are caused by potential GPR reflectors. These increases in ɛrμr coincide with the presence of either organic material, having a higher water content and relative permittivity than the surrounding sediment, or iron oxide bands, enhancing relative magnetic permeability and causing water to stagnate on top of them. Sedimentary structures, as reflected in textural change, only result in possible GPR reflections when the volumetric water content exceeds 0·055. The synthetic radar traces provide an improved insight into the behaviour of radar waves and show that GPR results may be ambiguous because of multiples and interference.  相似文献   
9.
In Vietnam, the coastal sand barriers and dunes located in front of the steep slopes of the high rising Truong Son Mountains are sensitive to climate and environment change and give evidence for Holocene sea-level rise. The outer barrier sands were deposited shortly before or contemporaneous with the local sea-level high stand along the Van Phong Bay postdating the last glacial maximum (LGM). Optically stimulated luminescence (OSL) dating yielded deposition ages ranging from 8.3 ± 0.6 to 6.2 ± 0.3 ka for the stratigraphically oldest exposed barrier sands. Further periods of sand accumulation took place between 2.7 and 2.5 ka and between 0.7 and 0.5 ka. The youngest period of sand mobilisation was dated to 0.2 ± 0.01 ka and is most likely related to reworked sand from mining activities. At the Suoi Tien section in southern central Vietnam, the deposition of the inner barrier sands very likely correlate with an earlier sea-level high stand prior to the last glaciation. OSL age estimates range from 276 ± 17 to 139 ± 15 ka. OSL dating significantly improves our knowledge about the sedimentary dynamics along the coast of Vietnam during the Holocene.  相似文献   
10.
This paper describes a new reference solar spectrum retrieved from measurements of the satellite instrument SCIAMACHY in the wavelength region from \(0.24~\upmu\mbox{m}\) to \(2.4~\upmu\mbox{m}\) and its comparison with several other established solar reference spectra. The SCIAMACHY reference spectrum was recorded early in the mission before substantial optical degradation due to the harsh space environment sets in. The radiometric calibration of SCIAMACHY, applied in this study, includes a physical model of the scanner unit. Furthermore, SCIAMACHY’s internal white light source (WLS) is used to correct for on-ground to in-flight changes. The resultant calibrated solar spectrum from SCIAMACHY is in good agreement with several available solar spectral irradiance (SSI) references in the visible spectral range. Strong throughput losses due to detector icing in the near infrared (NIR) are now adequately accounted for. Nevertheless, a deficit with respect to the ATLAS-3 composite and SORCE/SIM SSI is observed in the NIR. However, the SCIAMACHY solar reference spectrum agrees well with the recently re-evaluated SOLAR/SOLSPEC-ISS and recent ground measurements taken at Mauna Loa in the NIR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号