首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   9篇
  国内免费   2篇
测绘学   4篇
大气科学   37篇
地球物理   52篇
地质学   90篇
海洋学   39篇
天文学   24篇
自然地理   12篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   11篇
  2015年   8篇
  2014年   10篇
  2013年   24篇
  2012年   13篇
  2011年   11篇
  2010年   10篇
  2009年   17篇
  2008年   14篇
  2007年   15篇
  2006年   22篇
  2005年   8篇
  2004年   6篇
  2003年   9篇
  2002年   3篇
  2001年   7篇
  2000年   2篇
  1999年   2篇
  1998年   7篇
  1997年   4篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1981年   2篇
  1980年   1篇
  1978年   3篇
  1977年   1篇
  1974年   1篇
排序方式: 共有258条查询结果,搜索用时 78 毫秒
1.
Four nearly pure MgAl2O4 spinels, of both natural and synthetic occurrence, have been studied by means of X-ray single crystal diffraction and FTIR spectroscopy in order to detect their potential OH content. Absorption bands that can be assigned to OH incorporated in the spinel structure were only observed in spectra of a non-stoichiometric synthetic sample. The absorption intensity of two bands occurring at 3350 and 3548 cm−1 indicate an OH content of 90 ppm H2O. Based on correlations of OH vibrational frequencies and O-H?O distances, the observed absorption bands correspond to O-H?O distances of 2.77 and 2.99 Å, respectively, which is close to the values obtained by the structure refinements for VIO-Ounsh (2.825 Å) and IVO-O (3.001 Å). This indicates that one probable local position for hydrogen incorporation is the oxygens coordinating a vacant tetrahedral site. The present spectra demonstrate that the detection limit for OH in Fe-free spinels is in the range 10-20 ppm H2O. However, at appreciable Fe2+ levels, the detection of OH bands becomes hampered due to overlap with strong absorption bands caused by electronic d-d transitions in Fe2+ in the tetrahedral position.  相似文献   
2.
3.
The present preliminary report on studies of the influence of pulp bleach plant effluents on hepatic biotransformation enzymes in fish is a part of a major characterisation of biochemical and physiological effects of effluents from pulp industries in Sweden. Our studies on the xenobiotic biotransformation enzymes demonstrate, so far, that the pulp effluents have the potential to strongly induce 7-ethoxyresorufin-O-deethylase activity (EROD) in fish liver and that fish living in the receiving water of an effluent from a pulp bleach plant have induced hepatic EROD activities as well as higher hepatic UDP glucuronyltransferase activities than those living in an unpolluted area. It is thus apparent that measures of induction of biotransformation enzymes in fish liver may be a useful approach in monitoring the presence of potential hazardous compounds released from pulp industries.  相似文献   
4.
5.
6.
A worldwide data set of more than 500 humic coals from the major coal-forming geological periods has been used to analyse the evolution in the remaining (Hydrogen Index, HI) and total (Quality Index, QI) generation potentials with increasing thermal maturity and the ‘effective oil window’ (‘oil expulsion window’). All samples describe HI and QI bands that are broad at low maturities and that gradually narrow with increasing maturity. The oil generation potential is completely exhausted at a vitrinite reflectance of 2.0–2.2%Ro or Tmax of 500–510 °C. The initial large variation in the generation potential is related to the original depositional conditions, particularly the degree of marine influence and the formation of hydrogen-enriched vitrinite, as suggested by increased sulphur and hydrogen contents. During initial thermal maturation the HI increases to a maximum value, HImax. Similarly, QI increases to a maximum value, QImax. This increase in HI and QI is related to the formation of an additional generation potential in the coal structure. The decline in QI with further maturation is indicating onset of initial oil expulsion, which precedes efficient expulsion. Liquid petroleum generation from humic coals is thus a complex, three-phase process: (i) onset of petroleum generation, (ii) petroleum build-up in the coal, and (iii) initial oil expulsion followed by efficient oil expulsion (corresponding to the effective oil window). Efficient oil expulsion is indicated by a decline in the Bitumen Index (BI) when plotted against vitrinite reflectance or Tmax. This means that in humic coals the vitrinite reflectance or Tmax values at which onset of petroleum generation occurs cannot be used to establish the start of the effective oil window. The start of the effective oil window occurs within the vitrinite reflectance range 0.85–1.05%Ro or Tmax range 440–455 °C and the oil window extends to 1.5–2.0%Ro or 470–510 °C. For general use, an effective oil window is proposed to occur from 0.85 to 1.7%Ro or from 440 to 490 °C. Specific ranges for HImax and the effective oil window can be defined for Cenozoic, Jurassic, Permian, and Carboniferous coals. Cenozoic coals reach the highest HImax values (220–370 mg HC/g TOC), and for the most oil-prone Cenozoic coals the effective oil window may possibly range from 0.65 to 2.0%Ro or 430 to 510 °C. In contrast, the most oil-prone Jurassic, Permian and Carboniferous coals reach the expulsion threshold at a vitrinite reflectance of 0.85–0.9%Ro or Tmax of 440–445 °C.  相似文献   
7.
Using rainfall-runoff modeling to interpret lake level data   总被引:2,自引:0,他引:2  
Using water balance computations, the behavior of different kinds of lakes is discussed. Simple analytical expressions relating water level to hydrological conditions and lake bathymetry are given. The importance of knowing the river basin area when analyzing lake levels is stressed. A conceptual rainfall-runoff model including lake routing is used to simulate runoff and lake levels and to compute quasi-steady state conditions and long-term transient situations. It is suggested that models can be used to construct curves relating lake levels to precipitation and lake evaporation. By comparing with paleo-lake levels, the annual precipitation related to these levels can be found, provided information is available about the seasonal distribution of the precipitation.  相似文献   
8.
The impact of warmer climate on melt and evaporation was studied for rainfed, snowfed and glacierfed basins located in the western Himalayan region. Hydrological processes were simulated under current climatic conditions using a conceptual hydrological model, which accounts for the rainfall–runoff, evaporation losses, snow and glacier melt. After simulations of daily observed streamflow (R2=0.90) for 6 years, the model was used to study the impact of warmer climate on melt and evaporation. Based on the future projected climatic scenarios in the study region, three temperature scenarios (T+1, T+2 and T+3 °C) were adopted for quantifying the effect of warmer climate. The comparison of the effect of warmer climate on different types of basins indicated that the increase in evaporation was the maximum for snowfed basins. For a T+2 °C scenario, the annual evaporation for the rainfed basins increased by about 12%, whereas for the snowfed basins it increased by about 24%. The high increase of the evaporation losses would reduce the runoff. It was found that under a warmer climate, melt was reduced from snowfed basins, but increased from glacierfed basins. For a T+2 °C scenario, annual melt was reduced by about 18% for the studied snowfed basin, while it increased by about 33% for the glacierfed basin. Thus, impact of warmer climate on the melt from the snowfed and glacierfed basins was opposite to each other. The study suggests that out of three types of basins, snowfed basins are more sensitive in terms of reduction in water availability due to a compound effect of increase in evaporation and decrease in melt. For a complex type of basin, the decrease in melt from seasonal snow may be counterbalanced by increase in melt from glaciers. However, on long-term basis, when the areal extent of glaciers will decrease due to higher melt rate, the water availability from the complex basins will be reduced.  相似文献   
9.
Numerous studies have been conducted with electrochemical removal of heavy metals from spiked kaolinite. Meanwhile, when moving from kaolinite to real soils, new factors must be taken into account—factors influencing, e.g., the buffering capacity of the soil against acidification and the adsorption/desorption processes of the heavy metals. The present study gives some examples where it is necessary to use an enhancement solution to aid desorption of Cu, Zn and Pb during electrodialytic treatment. Dependent on the composition of the pollution, different choices can be made. In the case of a Cu-polluted calcareous soil, ammonia may be used as enhancement solution, due to the formation of charged complexes between ammonia and Cu. Thus, Cu is mobile at high pH when ammonia is added and Cu can be removed without dissolving the calcareous parts. Zn is also mobilized by ammonia, but to a lesser extent than Cu. In the case of Cu, Zn and Pb at the same time, alkaline ammonium citrate may be a solution. It was shown that this enhancement solution could mobilize these three pollutants, but optimization of concentration and pH of the ammonium citrate is still needed. When choosing a remediation scheme for electrochemical treatment of an actual industrially polluted soil, this scheme must be chosen on basis of characterization of soil and pollution combination.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号