首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   7篇
  国内免费   1篇
测绘学   3篇
大气科学   64篇
地球物理   35篇
地质学   84篇
海洋学   38篇
天文学   62篇
自然地理   5篇
  2023年   2篇
  2022年   9篇
  2021年   9篇
  2020年   6篇
  2019年   8篇
  2018年   15篇
  2017年   14篇
  2016年   19篇
  2015年   6篇
  2014年   15篇
  2013年   18篇
  2012年   16篇
  2011年   17篇
  2010年   17篇
  2009年   14篇
  2008年   12篇
  2007年   21篇
  2006年   13篇
  2005年   7篇
  2004年   3篇
  2003年   2篇
  2002年   10篇
  2001年   4篇
  2000年   2篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有291条查询结果,搜索用时 15 毫秒
1.

The results of the first polarimetric measurements of near-Earth asteroid 2014 JO25 and comet 41P/Tuttle-Giacobini-Kresák performed on April 19, 2017, with a CCD sensor at the prime focus (f/3.85) of the 2.6-m Shajn Telescope of the Crimean Astrophysical Observatory in the R filter are reported. The degree of linear polarization of the asteroid is P = 2.69 ± 0.44% at a phase angle of 55.6°, which is typical of an S-type asteroid. Its geometric albedo is ρv ≈ 0.2. A digital filter applied to the direct image of the comet reveals a jet and a tail directed toward the Sun (PA = 45.1°) and away from it (PA = 241.2°), respectively, in the coma. The maximum degree of linear polarization in the near-nucleus region of the comet is 18% at a phase angle of 69.8°. The polarization decreases to 16.2–10.7% in coma regions with a radius of 865–4856 km. Various factors affecting the maximum degree of polarization and the polarization-degree distribution over the coma are discussed.

  相似文献   
2.
Izvestiya, Atmospheric and Oceanic Physics - The central part of the Malouralsky volcanic–plutonic belt, which includes the Manyukuyu–Vorchatinsky ore cluster, is analyzed using...  相似文献   
3.
4.
Izvestiya, Atmospheric and Oceanic Physics - Bioparticles constitute a significant fraction of atmospheric aerosol. Their size range varies from nanometers (macromolecules) to hundreds of...  相似文献   
5.
6.
Geotectonics - In our study we analyzed the composition of granitoid rocks within the Kongo magmatic zone of the Omolon median mass. The studied calc-alkaline granitoids cut through the Early...  相似文献   
7.
This paper reports a study of the Tolud earthquake sequence; the sequence was a burst of shallow seismicity between November 28 and December 7, 2012; it accompanied the initial phase in the Tolbachik Fissure Eruption of 2012?2013. The largest earthquake (the Tolud earthquake of November 30, 2012, to be referred to as the Tolud Earthquake in what follows, with KS = 11.3, ML = 4.9, MC = 5.4, and MW = 4.8) is one of the five larger seismic events that have been recorded at depths shallower than 10 km beneath the entire Klyuchevskoi Volcanic Cluster in 1961?2015. It was found that the Tolud earthquake sequence was the foreshock–aftershock process of the Tolud Earthquake. This is one of the larger seismicity episodes ever to have occurred in the volcanic areas of Kamchatka. Data of the Kamchatka seismic stations were used to compute some parameters for the Tolud Earthquake and its largest (ML = 4.3) aftershock; the parameters include the source parameters and mechanisms, and the moment magnitudes, since no information on these is available at the world seismological data centers. The focal mechanisms for the Tolud Earthquake and for its aftershock are consistent with seismic ruptures at a tension fault in the rift zone. Instrumental data were used to estimate the intensity of shaking due to the Tolud Earthquake. We discuss the sequence of events that was a signature of the time-dependent seismic and volcanic activity that took place in the Tolbachik zone in late November 2012 and terminated in the Tolud burst of seismicity. Based on the current ideas of the tectonics and magma sources for the Tolbachik volcanic zone, we discuss possible causes of these earthquakes.  相似文献   
8.
New data on geology and 21 K–Ar dates of the Late Oligocene–Quaternary basalts in Syria, combined with analysis of the new and previous data are used to reconstruct the volcanic history and relations between it and tectonic events. Volcanism began at the end of Oligocene (26–24 Ma) and was concentrated in the Late Oligocene–Early Miocene along a N-trending band, which stretches from the Jebel Arab (Harrat Ash Shaam) up to Kurd Dagh and southern Turkey. Activity waned in the Middle Miocene (17–12 Ma), but was resumed in the same band in the Tortonian and increased in the Messinian and Early Pliocene (6.3–4 Ma), when volcanism spread to the Shin Plateau and its coastal extension. After a brief hiatus ~ 4–3.5 Ma, volcanism became still more intensive and spread from the N-trending band to the east into the northern margin of the Mesopotamian Foredeep and to the west into the Dead Sea Transform zone. Additional eruptions continued into the Holocene.Volcanism lasted > 25 million years in the Jebel Arab Highland and > 15 million years in the Aleppo Plateau. The long duration of volcanism in the same parts of the moving Arabian plate and absence of records of one-way migration of the activity mean that the magmatic sources moved together with the plate, i.e., they were situated within the lithosphere mantle. Coincidence of the tectonic and volcanic stages of the Arabian plate development proves that volcanic activity depended on the geodynamic situation, caused by the plate motion. Situated within the lithosphere, magmatic sources within this transverse band were possibly caused by thermal and deforming influences of the asthenospheric lateral flow, moved laterally from the Ethiopia–Afar deep superplume.  相似文献   
9.
After the catastrophic disruption of the Chelyabinsk meteoroid, small fragments formed funnels in the snow layer covering the ground. We constrain the pre‐impact characteristics of the fragments by simulating their atmospheric descent with the atmospheric entry model. Fragments resulting from catastrophic breakup may lose about 90% of their initial mass due to ablation and reach the snow vertically with a free‐fall velocity in the range of 30–90 m s?1. The fall time of the fragments is much longer than their cooling time, and, as a consequence, fragments have the same temperature as the lower atmosphere, i.e., of about ?20 °C. Then, we use the shock physics code iSALE to model the penetration of fragments into fluffy snow, the formation of a funnel and a zone of denser snow lining its walls. We examine the influence of several material parameters of snow and present our best‐fit model by comparing funnel depth and funnel wall characteristics with observations. In addition, we suggest a viscous flow approximation to estimate funnel depth dependence on the meteorite mass. We discuss temperature gradient metamorphism as a possible mechanism which allows to fill the funnels with denser snow and to form the observed “snow carrots.” This natural experiment also helps us to calibrate the iSALE code for simulating impacts into highly porous matter in the solar system including tracks in the aerogel catchers of the Stardust mission and possible impact craters on the 67P/Churyumov‐Gerasimenko comet observed recently by the Rosetta mission.  相似文献   
10.
The aim of this study is the synthesis of CuSeO3·2H2O (chalcomenite analog), ZnSeO3·2H2O, and ZnSeO3·H2O and the investigation of their solubility in water. CuSeO3·2H2O has been synthesized from solutions of Cu nitrate and Na selenite, while Zn selenites were synthesized from solutions of Zn nitrate and Na selenite. The samples obtained have been examined with X-ray diffraction and infrared and Raman spectroscopy. The solubility has been determined using the isothermal saturation method in ampoules at 25°C. The solubility has been calculated using the Geochemist’s Workbench (GMB 9.0) software package. Solubility products have been calculated for CuSeO3·2H2O (10–10.63), ZnSeO3·2H2O (10–8.35), and ZnSeO3·H2O (10–7.96). The database used comprises thermodynamic characteristics of 46 elements, 47 base particles, 48 redox pairs, 551 particles in solution, and 624 solid phases. The Eh–pH diagrams of the Zn–Se–H2O and Cu–Se–H2O systems were plotted for the average contents of these elements in underground water in oxidation zones of sulfide deposits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号