首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
地质学   10篇
海洋学   1篇
自然地理   1篇
  2013年   1篇
  2006年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1995年   3篇
  1989年   1篇
  1967年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
2.
The Proterozoic (950 Ma) Lyngdal granodiorite of southern Norwaybelongs to a series of hornblende–biotite metaluminousferroan granitoids (HBG suite) coeval with the post-collisionalRogaland Anorthosite–Mangerite–Charnockite (AMC)suite. This granitoid massif shares many geochemical characteristicswith rapakivi granitoids, yet granodiorites dominate over granites.To constrain both crystallization (P, T, fO2, H2O in melt) andmagma generation conditions, we performed crystallization experimentson two samples of the Lyngdal granodiorite (with 60 and 65 wt% SiO2) at 4–2 kbar, mainly at fO2 of NNO (nickel–nickeloxide) to NNO + 1, and under fluid-saturated conditions withvarious H2O–CO2 ratios for each temperature. Comparisonbetween experimental phase equilibria and the mineral assemblagein the Lyngdal granodiorite indicates that it crystallized between4 and 2 kbar, from a magma with 5–6 wt % H2O at an fO2of NNO to NNO + 1. These oxidized and wet conditions sharplycontrast with the dry and reduced conditions inferred for thepetrogenesis of the AMC suite and many other rapakivi granitesworldwide. The high liquidus temperature and H2O content ofthe Lyngdal granodiorite imply that it is not a primary magmaproduced by the partial melting of the crust but is derivedby the fractionation of a mafic magma. Lyngdal-type magmas appearto have volcanic equivalents in the geological record. In particular,our results show that oxidized high-silica rhyolites, such asthe Bishop Tuff, could be derived via fractionation of oxidizedintermediate magmas and do not necessarily represent primarycrustal melts. This study underlines the great variability ofcrystallization conditions (from anhydrous to hydrous and reducedto oxidized) and petrogenetic processes among the metaluminousferroan magmas of intermediate compositions (granodiorites,quartz mangerites, quartz latites), suggesting that there isnot a single model to explain these rocks. KEY WORDS: ferroan granitoids; crystallization conditions; experiments; Norway; Sveconorwegian; Bishop Tuff  相似文献   
3.
New H2O, CO2 and S concentration data for basaltic glasses fromLoihi seamount, Hawaii, allow us to model degassing, assimilation,and the distribution of major volatiles within and around theHawaiian plume. Degassing and assimilation have affected CO2and Cl but not H2O concentrations in most Loihi glasses. Waterconcentrations relative to similarly incompatible elements inHawaiian submarine magmas are depleted (Loihi), equivalent (Kilauea,North Arch, Kauai–Oahu), or enriched (South Arch). H2O/Ceratios are uncorrelated with major element composition or extentor depth of melting, but are related to position relative tothe Hawaiian plume and mantle source region composition, consistentwith a zoned plume model. In front of the plume core, overlyingmantle is metasomatized by hydrous partial melts derived fromthe Hawaiian plume. Downstream from the plume core, lavas tapa depleted source region with H2O/Ce similar to enriched Pacificmid-ocean ridge basalt. Within the plume core, mantle components,thought to represent subducted oceanic lithosphere, have waterenrichments equivalent to (KEA) or less than (KOO) that of Ce.Lower H2O/Ce in the KOO component may reflect efficient dehydrationof the subducting oceanic crust and sediments during recyclinginto the deep mantle. KEY WORDS: basalt; Hawaii; mantle; plumes; volatiles  相似文献   
4.
Diatoms and plant macrofossils in Devensian Lateglacial lacustrine sediments in Shetland suggest that the earliest response to interstadial warming was from benthic aquatic communities that could develop under lake ice. Further warming permitted longer ice-free summers and plankton growth. The terrestrial vegetation communities responded more slowly. Pollen of land plants was then partly derived from long distance input. Macrofossils support a reconstruction of terrestrial vegetation of sparse Salix herbacea and mosses in the early interstadial, increasing to grass tundra with tall herbs and Empetrum locally present, and with patches of disturbed ground. The occurrence of Betula and Juniperus remains questionable because of a lack of macrofossils, despite the presence of their pollen. Rumex pollen peaks suggest significant local presence at the stadial/interstadial transitions. Overall, the palaeoenvironmental reconstruction at this isolated oceanic site depends on several proxy indicators, of which pollen is less reliable than diatoms and plant macrofossils.  相似文献   
5.
A common fault of atmospheric general circulation models (AGCMs) is an overestimation of orographic precipitation. One basic reason is that water vapour advection schemes do not use information about the local temperature. When water vapour is advected from a warm grid point to a colder one, supersaturation may occur on the way, and the water vapour advected may partly precipitate before reaching the latter. This process is particularly important when moisture is advected upward mountain slopes along terrain‐following coordinates. Not taking it in account, i.e., letting all the moisture reach the colder point, leads to artificial drying of the windward valleys and foothills, and to overestimation of rainfall over summits and plateaux. This spurious behaviour is amplified by the resulting biases in the circulation, due to misplacement of the moisture convergence. It is a general bias, although its magnitude may be reduced, for instance when σ-coordinates are replaced by hybrid coordinates, or increased by highly diffusive schemes such as the upstream finite differencing. A simple way of correcting this bias is to test the advected water vapour with respect to saturation values, and redistribute it accordingly over the grid points found along the advecting path. This method is tested on a finite difference model using σ-coordinates and an upstream advection scheme. The effect on the distribution of moisture and rainfall is dramatic: precipitation is displaced from summits and plateaux to slopes and foothills, leading to much more realistic patterns, in particular for the Indian and Amazonian monsoons.  相似文献   
6.
7.
Experiments were conducted to determine the solubilities ofH2O and CO2 and the nature of their mixing behavior in basalticliquid at pressures and temperature relevant to seqfloor eruption.Mid-ocean ridge basaltic (MORB) liquid was equilibrated at 1200°Cwith pure H2O at pressures of 176–717 bar and H2O—CO2vapor at pressures up to 980 bar. Concentrations and speciationof H2O and CO2 dissolved in the quenched glasses were measuredusing IR spectroscopy. Molar absorptivities for the 4500 cm–1band of hydroxyl groups and the 5200 and 1630 cm–1 bandsof molecular water are 0•67±0•03, 0•62±0•07,and 25±3 l/mol-cm, respectively. These and previouslydetermined molar absorptivities for a range of silicate meltcompositions correlate positively and linearly with the concentrationof tetrahedral cations (Si+Al). The speciation of water in glass quenched from vapor-saturatedbasaltic melt is similar to that determined by Silver &Stolper (Journal of Petrology 30, 667–709, 1989) in albiticglass and can be fitted by their regular ternary solution modelusing the coefficients for albitic glasses. Concentrations ofmolecular water measured in the quenched basaltic glasses areproportional to f H2O in all samples regardless of the compositionof the vapor, demonstrating that the activity of molecular waterin basaltic melts follows Henry's law at these pressures. Abest fit to our data and existing higher-pressure water solubilitydata (Khitarov et al., Geochemistry 5, 479–492, 1959;Hamilton et al., Journal of Petrology 5, 21–39, 1964),assuming Henrian behavior for molecular water and that the dependenceof molecular water content on total water content can be describedby the regular solution model, gives estimates for the Vo, mH2Oof 12±1 cm3/mol and for the 1-bar water solubility of0•11 wt%. Concentrations of CO2 dissolved as carbonate in the melt forpure CO2-saturated and mixed H2O-CO2-saturated experiments area simple function of fCO2 These results suggest Henrian behaviorfor the activity of carbonate in basaltic melt and do not supportthe widely held view that water significantly enhances the solutionof carbon dioxide in basaltic melts. Using a Vo, mr of 23 cm3/mol(Pan et al., Geochimica et Cosmochimica Acta 55, 1587–1595,1991), the solubility of carbonate in the melt at 1 bar and1200°C is 0•5 p.p.m. Our revised determination of CO2solubility is 20% higher than that reported by Stolper &Holloway (Earth and Planetary Science Letters 87, 397–408,1988). KEY WORDS: mid-ocean ridge basalts; water and carbon dioxide solubility; experimental petrology  相似文献   
8.
Petrology of Submarine Lavas from Kilauea's Puna Ridge, Hawaii   总被引:13,自引:8,他引:5  
We have studied 30 quenched tholeiitic lava flows recoveredby 20 dredge hauls and one submersible dive along Puna Ridge,the submarine part of the East Rift Zone of Kilauea Volcano,Hawaii Glass grains from numerous additional flows were recoveredin turbidite sands cored in the Hawaiian Trough. These quenchedlavas document variable primary magma compositions; olivineand multiphase crystallization and fractionation; degassing;wall-rock stoping and assimilation; mixing in the crustal reservoirand the rift zone; entrainment of olivine xenocrysts from ahot, ductile, olivine cumulate body; and disruption of gabbrowallrocks in the rift zone. Glass grains in turbidite sands contain up to 15•0wt% MgO,in contrast to < 7•0wt% MgO for the sampled glass rindson lavas. The most forsteritic olivine phenocryst (F0907) isin equilibrium with primary Kilauea liquid containing an average16•5 wt% MgO, but ranging from 13•4 to 18•4%.Lavas and glass grains have more restricted P2O5/K2O and TiO2/K2Othan glass inclusions in olivine, because more diverse liquidstrapped as glass inclusions are mixed and homogenized beforeeruption. Variable trace element compositions in glass grainsand whole rocks indicate that the primary liquids form by partialmelting of mantle sources retaining clinopyroxene and garnet. Orthopyroxene xenocrysts formed at moderate pressures provideevidence for a sub-crustal staging zone. Chromite and olivinecrystallize in the crustal magma reservoir as the liquid coolsfrom an average 1346C to 1170C. Low viscosities of the primaryliquids (04 Pas) facilitate olivine settling, and the crystallizedolivine forms an olivine cumulate body at the base of the reservoir.Olivine is deformed as the hot ductile dunite body flows downand away from the summit. This flow drives instability of theHilina landslide on Kilauea. Dikes intrude the dunite, and magmaflowing through the dikes disaggregates and entrains olivinexenocrysts in Puna Ridge magmas. Primary liquids pond at or near the base of Kilauea's crustalreservoir because they are denser than more fractionated liquidsthat occupy the upper parts of the reservoir. The sulfur andwater contents of glass rinds indicate that fractionated liquidsnear the top of the reservoir degas at low pressure, a processthat increases their density and causes them to sink to levelswhere they mix with resident undegassed, near-primary liquid.The fractionated liquids near the top of the magma reservoiracquire excess Cl, owing to assimilation of hydrothermally alteredroofrocks. Magma flowing into the rift zone encounters and mixes with low-temperature,multiphase-fractionated melt. The mixed magmas typically containrare orthopyroxene, plagioclase as sodic as andesine, olivineas fayalitic as F075 and Fe-rich augite derived from the fractionatedmagma. Magma flowing through dikes also dislodged fragmentsof gabbroic wallrocks that occur as xenoliths. The interrelations in the Kilauean submarine lavas between hostglass and glass inclusion compositions, volatile contents andmineral chemistry reveal an extraordinarily complex sequenceof petrogenetic processes and events that are difficult or impossibleto determine in subaerial Kilauea lavas because of crystallization,reequilibration and degassing during or after their eruption. KEY WORDS: submarine lavas; petrology; Kilauea; Hawaii; magma mixing *Corresponding authorPresent address: Rosentiel School of Marine and Atmospheric Science, Division of Marine Geology and Geophysics, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149-1098, USA  相似文献   
9.
The equilibrium 3FeAl2O4 + 3Al2SiO3 = 5 Al2O3 (1) has been calibrated in the piston-cylinder apparatus. Experimentswere carried out using well-calibrated NaCl furnace assembliesand Ag80Pd20 capsules with oxygen fugacity buffered at or neariron–w?stite. The equilibrium is located at less than7?2 kb at 85O?C and between 8?0 and 8?2, 10?0 and 10?5, and12?0 and 12?2 kb at 900, 1000, and 1100?C, respectively. Experimentshave also been conducted to determine the effect of gahnite(ZnAl2O4) component in spinel on equilibrium (1). Graphite capsuleswere used with oxygen fugacity buffered at or near graphite-CO-CO2.The addition of zinc displaces the reaction to higher pressures.For hercyniteg86-gahnite14, the equilibrium is located between9?4 and 9?6 and 12?7 and 13?0kb at 900 and 1050?C, respectively.For hercynite70-gahnite30, the equilibrium is located between10?8 and 11?0 and 15?4 and 15?6 kb at 900 and 1050?C, respectively.The results indicate that hercynite-gahnite solutions are somewhatnon-ideal (WG = +6?54 kJ/mol at 900?Q assuming a symmetric regularsolution model. A thermobarometer based on equilibrium (1) is applicable inhigh-grade metapelitic rocks. Pressure/temperature estimatesusing this equilibrium agree with other well-calibrated thermometersand barometers. Failure of equilibrium (1) to intersect the equilibrium 3 FeAl2O4 + 5 SiO2 = Fe3Al2Si3O12 + 2 Al2SiO5 (2) indicates that the equilibrium corundum + quartz = sillimaniteis metastable at all pressures and temperatures. This impliesthat co-occurrences of corundum and quartz in granulites aremetastable.  相似文献   
10.
Degassing processes in basaltic magmas rich in both water andcarbon dioxide can be modeled using the solubilities of theendmember systems and the assumption of Henry's law. Suitesof vapor-saturated basaltic melts having a range of initialCO2/H2O ratios and erupted over a narrow depth interval willdefine negatively sloped arrays on an H2O vs CO2 plot. It isimportant that all of the major volatile species be consideredsimultaneously when interpreting trends in dissolved volatilespecies concentrations in magmas. Based on measured concentrations of water and carbon dioxidein basaltic glasses, the composition of the vapor phase at 1200°Cthat could coexist with a basaltic melt and the pressure atwhich it would be vapor saturated can be calculated. The rangein vapor compositions in equilibrium with submarine basaltsreflects the range in water contents in the melts characteristicof each environment. The ranges in the molar proportion of CO2in vapor phases (XCO2) calculated to be in equilibrium withsubmarine tholeiitic glasses are 0•93–1•00 formid-ocean ridge basalts (MORB), 0•60–0•99 forglasses from Kilauea [representative of ocean island basalts(OIB)] and 0–0•94 for glasses from back-arc basins(BABB). MORB glasses from spreading centers ranging from slow(e.g. the Mid-Atlantic Ridge) to fast (e.g. East Pacific Rise,9–13°N) are commonly supersaturated with respect toCO2-rich vapor, resulting from magma ascent rates so rapid thatmagmas erupt on the sea-floor without having been fully degassedby bubble nucleation and growth during ascent. In contrast tothe MORB glasses, volatile contents in submarine glasses fromKilauea are consistent with having been in equilibrium witha vapor phase containing 60–100 mol% CO2 at the pressureof eruption, reflecting differences in average magma transportrates during eruptions at mid-ocean ridges and hotspot volcanoes. Degassing during decompression of tholeiitic basaltic magmais characterized by strong partitioning of CO2 into the vaporphase. During open system degassing, CO2 is rapidly removedfrom the melt with negligible loss of water, until a pressureis reached at which the melt is in equilibrium with nearly purewater vapor. From this pressure downward, the water contentof the melt follows the water solubility curve. During closedsystem degassing, water and CO2 contents in vapor-saturatedbasaltic magmas will depend strongly on the vapor compositionas determined by the initial volatile concentrations. Deviationfrom open system behavior, toward lower dissolved H2O and CO2saturation concentrations at a given pressure, will be greatestin melts having high total volatile concentrations and highCO2:H2O ratios. Closed system degassing of basaltic melts havingthe low initial H2O and CO2 contents typical of MORB and OIB,however, are similar to the open system case. KEY WORDS: mid-ocean ridge basalts; water and carbon dioxide solubility; degassing  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号