首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
地球物理   2篇
地质学   2篇
海洋学   1篇
天文学   4篇
自然地理   1篇
  2021年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2011年   4篇
  2008年   1篇
排序方式: 共有10条查询结果,搜索用时 187 毫秒
1
1.
We present a case study of the 13 July 2004 solar event, in which disturbances caused by eruption of a filament from an active region embraced a quarter of the visible solar surface. Remarkable are the absorption phenomena observed in the SOHO/EIT 304 Å channel, which were also visible in the EIT 195 Å channel, in the Hα line, and even in total radio flux records. Coronal and Moreton waves were also observed. Multispectral data allowed reconstructing an overall picture of the event. An explosive filament eruption and related impulsive flare produced a CME and blast shock, both of which decelerated and propagated independently. Coronal and Moreton waves were kinematically close and both decelerated in accordance with an expected motion of a coronal blast shock. The CME did not resemble a classical three-component structure, probably because some part of the ejected mass fell back onto the Sun. Quantitative evaluations from different observations provide close estimates of the falling mass, ~3×1015?g, which is close to the estimated mass of the CME. The falling material was responsible for the observed large-scale absorption phenomena, in particular, shallow widespread moving dimmings observed at 195 Å. By contrast, deep quasi-stationary dimmings observed in this band near the eruption center were due to plasma density decrease in coronal structures.  相似文献   
2.
Izvestiya, Atmospheric and Oceanic Physics - It is known that in mammals living in climates other than tropical, hemoconcentration is usually observed in winter. The average modern person actively...  相似文献   
3.
4.
Plasma with a temperature close to the chromospheric one is ejected in solar eruptions. Such plasma can occult some part of emission of compact sources in active regions as well as quiet solar areas. Absorption phenomena can be observed in the microwave range as the so-called “negative bursts” and also in the He II 304 ? line. The paper considers three eruptive events associated with rather powerful flares. Parameters of absorbing material of an eruption are estimated from multi-frequency records of a “negative burst” in one event. “Destruction” of an eruptive filament and its dispersion like a cloud over a huge area observed as a giant depression of the 304 ? line emission has been revealed in a few events. One of the three currently known events is considered in this paper. One more of the events considered here is a possible candidate for such events.  相似文献   
5.
Kuzmenko  I. V. 《Astronomy Reports》2021,65(12):1254-1264
Astronomy Reports - Several solar events with different types of negative microwave bursts have been studied using data from different spectral ranges. The total radio flux data obtained at the...  相似文献   
6.
We show that a Moreton wave, an “EIT wave,” and a type II radio burst observed during a solar flare of July 13, 2004, might have been a manifestation of a single front of a decelerating shock wave, which appeared in an active region (AR) during a filament eruption. We propose describing a quasi-spheroidal wave propagating upward and along the solar surface by using relations known from a theory of a point-like explosion in a gas whose density changes along the radius according to a power law. By applying this law to fit the drop in density of the coronal plasma enveloping the solar active region, we first managed to bring the measured positions and velocities of surface Moreton wave and “EIT wave” into correspondence with the observed frequency drift rate of the meter type II radio burst. The exponent of the vertical coronal density falloff is selected by fitting the power law to the Newkirk and Saito empirical distributions in the height range of interest. Formal use of such a dependence in the horizontal direction with a different exponent appears to be reasonable up to distances of less than 200 Mm around the eruption center. It is possible to assume that the near-surface shock wave weakens when leaving this radius and finally the active region, entering the region of the quiet Sun where the coronal plasma density and the fast-mode speed are almost constant along the horizontal.  相似文献   
7.
The structure and dynamics of geosystems in the northwestern part of Western Siberia is considered using the Kazym-Lyamin interfluve, based on the landscape-assessment map for the middle part of the Khanty-Mansi Autonomous District. The study used the landscape structural-dynamical approach and the methods of studying the spatio-temporal dynamics of taiga geosystems.  相似文献   
8.
The eruption of a large quiescent prominence on 17 August 2013 and an associated coronal mass ejection (CME) were observed from different vantage points by the Solar Dynamics Observatory (SDO), the Solar-Terrestrial Relations Observatory (STEREO), and the Solar and Heliospheric Observatory (SOHO). Screening of the quiet Sun by the prominence produced an isolated negative microwave burst. We estimated the parameters of the erupting prominence from a radio absorption model and measured them from 304 Å images. The variations of the parameters as obtained by these two methods are similar and agree within a factor of two. The CME development was studied from the kinematics of the front and different components of the core and their structural changes. The results were verified using movies in which the CME expansion was compensated for according to the measured kinematics. We found that the CME mass (\(3.6 \times 10^{15}\mbox{ g}\)) was mainly supplied by the prominence (\(\approx 6 \times 10^{15}\mbox{ g}\)), while a considerable part drained back. The mass of the coronal-temperature component did not exceed \(10^{15}\mbox{ g}\). The CME was initiated by the erupting prominence, which constituted its core and remained active. The structural and kinematical changes started in the core and propagated outward. The CME structures continued to form during expansion, which did not become self-similar up to \(25~\mathrm{R}_{\odot }\). The aerodynamic drag was insignificant. The core formed during the CME rise to \(4~\mathrm{R}_{\odot }\) and possibly beyond. Some of its components were observed to straighten and stretch outward, indicating the transformation of tangled structures of the core into a simpler flux rope, which grew and filled the cavity as the CME expanded.  相似文献   
9.
10.
The objective of the present study is to design a basic software and hardware complex (SHC) of a seismometric monitoring system for buildings and structures recommended for serial production. To do this, the authors used modern methods and principles of designing software and hardware systems. The system is methodologically based on the engineering-seismometric method. This method uses recording of spatial vibrations of an object as a result of microseisms of natural and anthropogenic origin. Next, dynamic and elastic characteristics of the structure are determined by vibrations that make it possible to evaluate its technical condition. As a result of conducted studies, the authors defined the main technical and functional requirements for the monitoring system for a wide range of applications. A three-level structure of a modular technical condition monitoring system is proposed for discussion. This structure makes it possible to create an extensible open system in which the number of measuring channels can be easily increased by increasing the number of plugin standard modules. In addition, the system can both record seismic events, earthquakes, and perform seismometric monitoring by microseisms. In order to represent the main processes and structure of the proposed basic complex of the system in the case of its full operation, the authors developed a functional model of the system. The model is based on a data flow diagram that describes the processes of collecting, processing, storing, analyzing, and presenting seismometric monitoring data. The functioning of the proposed complex is briefly described. The input data of the complex are the vibrations of the structure recorded at observation points using three-component geophones. Then, the seismic signal recorder collects, amplifies, digitizes, and transmits data to the server. The server either records seismic events and then evaluates their impact on the structure or carries out a planned recording of microseisms in order to monitor the technical condition of the structure and stores vibration data in the corresponding files. If an earthquake is detected, the system notifies the responsible personnel. Records of microseisms are used by the data processing software to compute the statistical parameters of vibrations and complex transfer functions according to the spectra of which the operator manually selects the values of natural frequencies. Seismic monitoring data processing software evaluates elastic characteristics by a number of natural frequencies using a mathematical design model of the structure vibrations. On the basis of the analysis of the change in the obtained dynamic and elastic characteristics and taking into account the effect of external factors, the software generates information for monitoring the technical condition of the structure. These results, as well as data of the evaluation of the event impact on the structure, are the output data of the system.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号