首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
测绘学   1篇
大气科学   1篇
地球物理   3篇
地质学   2篇
  2022年   2篇
  2020年   1篇
  2013年   1篇
  2012年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
LIDAR Data Filtering and DTM Interpolation Within GRASS   总被引:5,自引:0,他引:5  
LIDAR (Light Detection and Ranging) is one of the most recent technologies in surveying and mapping. LIDAR is based on the combination of three different data collection tools: a laser scanner mounted on an aircraft, a Global Positioning System (GPS) used in phase differential kinematic modality to provide the sensor position and an Inertial Navigation System (INS) to provide the orientation. The laser sends towards the ground an infrared signal, which is reflected back to the sensor. The time employed by the signal, given the aircraft position and attitude, allows computation of the earth point elevation. In standard conditions, taking into account the flight (speed 200–250 km/hour, altitude 500–2,000 m) and sensor characteristics (scan angle ± 10–20 degrees, emission rate 2,000–50,000 pulses per second), earth elevations are collected within a density of one point every 0.5–3 m. The technology allows us therefore to obtain very accurate (5–20 cm) and high resolution Digital Surface Models (DSM). For many applications, the Digital Terrain Model (DTM) is needed: we have to automatically detect and discard from the previous DSM all the features (buildings, trees, etc.) present on the terrain. This paper describes a procedure that has been implemented within GRASS to construct DTMs from LIDAR source data.  相似文献   
2.
Longoni  Laura  Ivanov  Vladislav  Ferrario  Maddalena  Brunero  Marco  Papini  Monica  Arosio  Diego 《Landslides》2022,19(3):761-772

Optical fibre–based sensors have now established their place in the field of geohazard monitoring due to their sensitivity to strain and temperature changes. Progressive development in the technology leads to the availability of novel, accurate and durable sensors at a relatively limited cost. This creates room for original monitoring applications that have been, so far, impeded by the shortcomings of conventional monitoring tools. In this work, we explore the applicability of an interferometric optical fibre sensor as a vibration sensing tool at laboratory scale. We tested the ability of the sensor to identify precursors of instability in a downscaled model of a rainfall-induced landslide composed of granular material. We carried out four experimental tests which involved different sensor deployments and soil mixtures. The recorded signals were processed by means of a time–frequency analysis and we identified two frequency-domain parameters—the spectral centroid and band power—that could provide information on the development of instability. Their ratio yielded a unique parameter through which a precursory stage could be outlined by defining a threshold value based on the data collected at the beginning of the experiment. In our lab tests, precursors of instability were detected 2–3 min before a crack was observed at the surface. This may upscale to a lead time of about 20–30 min or more in the field, classifying our monitoring approach in between an alarm and a warning system. The work presented here can be considered a first promising step towards an innovative monitoring system and shows the potential of optical fibre sensing as a shallow landslide monitoring technique, encouraging further testing, especially in real-case studies.

  相似文献   
3.
Mathematical Geosciences - The problem of providing data-driven models for sediment transport in a pre-Alpine stream in Italy is addressed. This study is based on a large set of measurements...  相似文献   
4.
5.
The near-surface rock structure that covers an abandoned marl mine nearby the village of Montevecchia (Italy) was investigated through a combination of seismic surveys. The methods selected for these investigations were refraction seismics and multichannel analysis of surface waves (MASW). A sort of transillumination experiment was also attempted. All the methods were successful and gave complementary information. Refraction seismics was used to characterize the upper low velocity layer and the second layer of the near-surface structure. The MASW method was necessary to assess the existence of a velocity inversion revealing the presence of a low velocity layer between the 2nd layer and a 4th high velocity layer covering the upper mine gallery. The transillumination experiment validated the presence of the 4th layer and gave an estimate of the average velocity that represents a lower boundary for the P-wave velocity within this layer. Both the refraction and transillumination data were analysed to derive average estimates of attenuation level and rock quality factor.  相似文献   
6.
7.
Understanding coarse sediment transport is crucial for the prediction of sediment migration and the consequent development of fluvial morphologies. In this study, cobble displacements in a pre-Alpine creek have been recorded by means of radio frequency identification (RFID). Pebble monitoring has been systematically performed after each rainfall event with moderate precipitation, in order to exclude the superimposition of sediment displacements induced by triggering factors acting at different times. The analysis of the collected data was carried out through the application of both a principal component analysis and the Buckingham Π theorem. The experimental trends were interpreted considering the ratio of mobile pebbles, the pebbles' displacement and virtual velocity as the dependent variables. These quantities mostly depend on the event peak discharge, with a nonlinear increase of the travelled distance and a growth of up to two orders of magnitude of the virtual velocity (for an approximately 10× increase in peak discharge). An inverse dependency of the virtual velocity on the event duration was also observed. A comparison of the results obtained with those from laboratory investigations of bedload transport mechanics evidenced the differences in parametric trends associated with sediment mobility in the two environments. This contrast brings forward the combination of multiple drivers of sediment mobility, such as local morphology, sediment dimensions and flow unsteadiness, warranting a further in-depth investigation. Representation of results in a dimensionless form is suggested as a good practice to analyse data from case studies characterized by different scales. © 2019 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号